【深度学习】概率图模型理论简介

本文介绍了概率图模型的基础知识,包括有向图模型(贝叶斯网络)和无向图模型(马尔可夫网络)。贝叶斯网络用于描述变量间的因果关系,常用于诊断和决策分析;马尔可夫网络则体现相关性,常见于图像分割和语音识别。通过实例展示了概率图模型在气候干旱传播分析中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


概率图模型(Probabilistic Graphical Model,PGM)是一种用图结构来表示和推断多元随机变量之间条件独立性的概率模型。图模型提供了一种直观且有效的方式来描述高维空间中的概率分布,通过图结构表示随机变量之间的关系,使得模型的参数量得以减少。

1 概率图模型

在概率图模型中

  • 随机变量通常用斜体的大写字母表示,取值用斜体的小写字母表示。
  • 随机向量用粗斜体的大写字母表示,其取值用粗斜体的小写字母表示。

2 模型表示

概率图模型主要分为两类:有向图模型和无向图模型。

2.1 有向图模型(Bayesian networks 贝叶斯网络)

贝叶斯网络是一种有向图模型,是由节点和链路组成的直接无环图(direct acyclic graph, DAG)用于描述变量之间的因果关系。图中的节点表示随机变量,边表示变量之间的依赖关系,而有向边则表示因果关系。每个节点都与一个条件概率分布相关联,该分布描述了节点在给定其父节点的情况下的条件概率。贝叶斯网络通常用于建模诊断、决策分析等领域。

如果图中有一条从节点 (A) 到节点 (B) 的有向边,表示 (A) 是 (B) 的一个直接因果。在这种模型中,边的方向表示了变量之间的因果关系,而节点之间的有向路径可以表示条件独立性关系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WW、forever

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值