题目
求解Vander Monde行列式
V n = ( x i j − 1 ) n × n = ( 1 x 1 x 1 2 ⋯ x 1 n − 1 1 x 2 x 2 2 ⋯ x 2 n − 1 ⋮ ⋮ ⋮ ⋱ ⋮ 1 x n − 1 x n − 1 2 ⋯ x n − 1 n − 1 1 x n x n 2 ⋯ x n n − 1 ) . {
{V}_{n}}={
{\left( {
{x}_{i}}^{j-1} \right)}_{n\times n}}=\left( \begin{matrix} 1 & {
{x}_{1}} & {
{x}_{1}}^{2} & \cdots & {
{x}_{1}}^{n-1} \\ 1 & {
{x}_{2}} & {
{x}_{2}}^{2} & \cdots & {
{x}_{2}}^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & {
{x}_{n-1}} & {
{x}_{n-1}}^{2} & \cdots & {
{x}_{n-1}}^{n-1} \\ 1 & {
{x}_{n}} & {
{x}_{n}}^{2} & \cdots & {
{x}_{n}}^{n-1} \\ \end{matrix} \right). Vn=(xij−1)n×n=⎝⎜⎜⎜⎜⎜⎛11⋮11x1x2⋮xn−1xnx12x22⋮xn−12xn2⋯⋯⋱⋯⋯x1n−1x2n−1⋮xn−1n−1xnn−1⎠⎟⎟⎟⎟⎟⎞.
解法:行消去法
行消去法:变换行列式使得其中某一行全为零或者几乎全为零。
我们打算消去 V n {
{V}_{n}} Vn的最后一行。观察并整理得以下材料:
- 不同行 i , j i,j i,j之间未知数 x i { {x}_{i}} xi与 x j { {x}_{j}} xj是不同的,运用行之间的线性抵消难以化简;
- 同一行 j j j里的元素都是以 x j { {x}_{j}} xj为底的幂;
- 同一行 j j j的元素 x j k { {x}_{j}}^{k} xjk从左至右指数 k k k依次递增。
通过第2点,我们拟采用列之间的线性抵消。通过第3点,为了避免列之间抵消过程中由于 x j = 0 {
{x}_{j}}=0 xj=0造成 x j − m ( m > 0 ) {
{x}_{j}}^{-m}\left( m>0 \right) xj−m(m>0)无意义的问题,我们不会将靠右边的列叠加到靠左边的列,即我们打算将靠左边的列叠加到靠右边的列。而一般的策略有:将固定某一列叠加到其余各列,或者依次将相邻两列进行叠加,经过尝试,我们选择后者,即将第 j ( = n − 1 , n − 2 , ⋯ , 2 , 1 ) j\left( =n-1,n-2,\cdots ,2,1 \right) j(=n−1,n−2,⋯,2,1)列乘以 ( − x n ) \left( -{
{x}_{n}} \right) (−xn)加到第 j + 1 j+1 j+1列上:
V n = ( 1 x 1 x 1 2 ⋯ x 1 n − 3 x 1 n − 2 x 1 n − 1 1 x 2 x 2 2 ⋯ x 2 n − 3 x 2 n − 2 x 2 n − 1 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 1 x n − 1 x n − 1 2 ⋯ x n − 1 n − 3 x n − 1 n − 2 x n − 1 n − 1 1 x n x n 2 ⋯ x n n − 3 x n n − 2 x n n − 1 ) → = − x n c n − 1 → c n ( 1 x 1 x 1 2 ⋯ x 1 n − 3 x 1 n − 2 x 1 n − 2 ( x 1 − x n ) 1 x 2 x 2 2 ⋯ x 2 n − 3 x 2 n − 2 x 2 n − 2 ( x 2 − x n ) ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 1 x n − 1 x n − 1 2 ⋯ x n − 1 n − 3 x n − 1 n − 2 x n − 1 n − 2 ( x n − 1 − x n ) 1 x n x n 2 ⋯ x n n − 3 x n n − 2 0 ) → = − x n c n − 2 → c n − 1 ( 1 x 1 x 1 2 ⋯ x 1 n − 3 x 1 n − 3 ( x 1 − x n ) x 1 n − 2 ( x 1 − x n ) 1 x 2 x 2 2 ⋯ x 2 n − 3 x 2 n − 3 ( x 2 − x n ) x 2 n − 2 ( x 2 − x n ) ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 1 x n − 1 x n − 1 2 ⋯ x n − 1 n − 3 x n − 1 n − 3 ( x n − 1 − x n ) x n − 1 n − 2 ( x n − 1 − x n ) 1 x n x n 2 ⋯ x n n − 3 0 0 ) → ⋯ → = − x n c 1 → c 2 ( 1 x 1 − x n x 1 ( x 1 − x n ) ⋯ x 1 n − 4 ( x 1 − x n ) x 1 n − 3 ( x 1 − x n ) x 1 n − 2 ( x 1 − x n ) 1 x 2 − x n x 2 ( x 2 − x n ) ⋯ x 2 n − 4 ( x 2 − x n ) x 2 n − 3 ( x 2 − x n ) x 2 n − 2 ( x 2 − x n ) ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 1 x n − 1 − x n x n − 1 ( x n − 1 − x n ) ⋯ x n − 1 n − 4 ( x n − 1 − x n ) x n − 1 n − 3 ( x n − 1 − x n ) x n − 1 n − 2 ( x n − 1 − x n ) 1 0 0 ⋯ 0 0 0 ) → = 提 取 每 行 i 公 因 数 ( x i − x n ) 后 , 按 r n 展 开 1 × ( − 1 ) n + 1 × ∏ j = 1 n − 1 ( x j − x n ) ∣ 1 x 1 ⋯ x 1 n − 4 x 1 n − 3 x 1 n − 2 1 x 2 ⋯ x 2 n − 4 x 2 n − 3 x 2 n − 2 ⋮ ⋮ ⋮ ⋮ ⋮ 1 x n − 1 ⋯ x n − 1 n − 4 x n − 1 n − 3 x n − 1 n − 2 ∣ . \begin{aligned} & {
{V}_{n}}=\left( \begin{matrix} 1 & {
{x}_{1}} & {
{x}_{1}}^{2} & \cdots & {
{x}_{1}}^{n-3} & {
{x}_{1}}^{n-2} & {
{x}_{1}}^{n-1} \\ 1 & {
{x}_{2}} & {
{x}_{2}}^{2} & \cdots & {
{x}_{2}}^{n-3} & {
{x}_{2}}^{n-2} & {
{x}_{2}}^{n-1} \\ \vdots & \vdots & \vdots & {} & \vdots & \vdots & \vdots \\ 1 & {
{x}_{n-1}} & {
{x}_{n-1}}^{2} & \cdots & {
{x}_{n-1}}^{n-3} & {
{x}_{n-1}}^{n-2} & {
{x}_{n-1}}^{n-1} \\ 1 & {
{x}_{n}} & {
{x}_{n}}^{2} & \cdots & {
{x}_{n}}^{n-3} & {
{x}_{n}}^{n-2} & {
{x}_{n}}^{n-1} \\ \end{matrix} \right) \\ & \xrightarrow[{=}]{
{-x_n c_{n-1} \to c_n}}\left( \begin{matrix} 1 & {
{x}_{1}} & {
{x}_{1}}^{2} & \cdots & {
{x}_{1}}^{n-3} & {
{x}_{1}}^{n-2} & {
{x}_{1}}^{n-2}\left( {
{x}_{1}}-{
{x}_{n}} \right) \\ 1 & {
{x}_{2}} & {
{x}_{2}}^{2} & \cdots & {
{x}_{2}}^{n-3} & {
{x}_{2}}^{n-2} & {
{x}_{2}}^{n-2}\left( {
{x}_{2}}-{
{x}_{n}} \right) \\ \vdots & \vdots & \vdots & {} & \vdots & \vdots & \vdots \\ 1 & {
{x}_{n-1}} & {
{x}_{n-1}}^{2} & \cdots & {
{x}_{n-1}}^{n-3} & {
{x}_{n-1}}^{n-2} & {
{x}_{n-1}}^{n-2}\left( {
{x}_{n-1}}-{
{x}_{n}} \right) \\ 1 & {
{x}_{n}} & {
{x}_{n}}^{2} & \cdots & {
{x}_{n}}^{n-3} & {
{x}_{n}}^{n-2} & 0 \\ \end{matrix} \right) \\ & \xrightarrow[{=}]{
{-x_n c_{n-2} \to c_{n-1}}}\left( \begin{matrix} 1 & {
{x}_{1}} & {
{x}_{1}}^{2} & \cdots & {
{x}_{1}}^{n-3} & {
{x}_{1}}^{n-3}\left( {
{x}_{1}}-{
{x}_{n}} \right) & {
{x}_{1}}^{n-2}\left( {
{x}_{1}}-{
{x}_{n}} \right) \\ 1 & {
{x}_{2}} & {
{x}_{2}}^{2} & \cdots & {
{x}_{2}}^{n-3} & {
{x}_{2}}^{n-3}\left( {
{x}_{2}}-{
{x}_{n}} \right) & {
{x}_{2}}^{n-2}\left( {
{x}_{2}}-{
{x}_{n}} \right) \\ \vdots & \vdots & \vdots & {} & \vdots & \vdots & \vdots \\ 1 & {
{x}_{n-1}} & {
{x}_{n-1}}^{2} & \cdots & {
{x}_{n-1}}^{n-3} & {
{x}_{n-1}}^{n-3}\left( {
{x}_{n-1}}-{
{x}_{n}} \right) & {
{x}_{n-1}}^{n-2}\left( {
{x}_{n-1}}-{
{x}_{n}} \right) \\ 1 & {
{x}_{n}} & {
{x}_{n}}^{2} & \cdots & {
{x}_{n}}^{n-3} & 0 & 0 \\ \end{matrix} \right) \\ & \xrightarrow[{}]{
{}}\cdots \\ & \xrightarrow[{=}]{
{-x_n c_1 \to c_2}}\left( \begin{matrix} 1 & {
{x}_{1}}-{
{x}_{n}} & {
{x}_{1}}\left( {
{x}_{1}}-{
{x}_{n}} \right) & \cdots & {
{x}_{1}}^{n-4}\left( {
{x}_{1}}-{
{x}_{n}} \right) & {
{x}_{1}}^{n-3}\left( {
{x}_{1}}-{
{x}_{n}} \right) & {
{x}_{1}}^{n-2}\left( {
{x}_{1}}-{
{x}_{n}} \right) \\ 1 & {
{x}_{2}}-{
{x}_{n}} & {
{x}_{2}}\left( {
{x}_{2}}-{
{x}_{n}} \right) & \cdots & {
{x}_{2}}^{n-4}\left( {
{x}_{2}}-{
{x}_{n}} \right) & {
{x}_{2}}^{n-3}\left( {
{x}_{2}}-{
{x}_{n}} \right) & {
{x}_{2}}^{n-2}\left( {
{x}_{2}}-{
{x}_{n}} \right) \\ \vdots & \vdots & \vdots & {} & \vdots & \vdots & \vdots \\ 1 & {
{x}_{n-1}}-{
{x}_{n}} & {
{x}_{n-1}}\left( {
{x}_{n-1}}-{
{x}_{n}} \right) & \cdots & {
{x}_{n-1}}^{n-4}\left( {
{x}_{n-1}}-{
{x}_{n}} \right) & {
{x}_{n-1}}^{n-3}\left( {
{x}_{n-1}}-{
{x}_{n}} \right) & {
{x}_{n-1}}^{n-2}\left( {
{x}_{n-1}}-{
{x}_{n}} \right) \\ 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ \end{matrix} \right) \\ & \xrightarrow[{=}]{
{提取每行i公因数\left(x_i-x_n \right)后,按r_n展开}}1\times {
{\left( -1 \right)}^{n+1}}\times \prod\limits_{j=1}^{n-1}{\left( {
{x}_{j}}-{
{x}_{n}} \right)}\left| \begin{matrix} 1 & {
{x}_{1}} & \cdots & {
{x}_{1}}^{n-4} & {
{x}_{1}}^{n-3} & {
{x}_{1}}^{n-2} \\ 1 & {
{x}_{2}} & \cdots & {
{x}_{2}}^{n-4} & {
{x}_{2}}^{n-3} & {
{x}_{2}}^{n-2} \\ \vdots & \vdots & {} & \vdots & \vdots & \vdots \\ 1 & {
{x}_{n-1}} & \cdots & {
{x}_{n-1}}^{n-4} & {
{x}_{n-1}}^{n-3} & {
{x}_{n-1}}^{n-2} \\ \end{matrix} \right|. \\ \end{aligned} Vn=⎝⎜⎜⎜⎜⎜⎛11⋮11x1x2⋮xn−1xnx12x22⋮xn−12xn2⋯⋯⋯⋯x1