n阶Vander Monde(范德蒙德)行列式的计算

本文介绍了如何使用行消去法计算n阶Vander Monde行列式Vn,详细解析了通过列线性抵消逐步化简的过程,最终得到递推公式Vn=1≤α<β≤n∏(xβ−xα),展示了行列式的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

  求解Vander Monde行列式
V n = ( x i j − 1 ) n × n = ( 1 x 1 x 1 2 ⋯ x 1 n − 1 1 x 2 x 2 2 ⋯ x 2 n − 1 ⋮ ⋮ ⋮ ⋱ ⋮ 1 x n − 1 x n − 1 2 ⋯ x n − 1 n − 1 1 x n x n 2 ⋯ x n n − 1 ) . { {V}_{n}}={ {\left( { {x}_{i}}^{j-1} \right)}_{n\times n}}=\left( \begin{matrix} 1 & { {x}_{1}} & { {x}_{1}}^{2} & \cdots & { {x}_{1}}^{n-1} \\ 1 & { {x}_{2}} & { {x}_{2}}^{2} & \cdots & { {x}_{2}}^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & { {x}_{n-1}} & { {x}_{n-1}}^{2} & \cdots & { {x}_{n-1}}^{n-1} \\ 1 & { {x}_{n}} & { {x}_{n}}^{2} & \cdots & { {x}_{n}}^{n-1} \\ \end{matrix} \right). Vn=(xij1)n×n=1111x1x2xn1xnx12x22xn12xn2x1n1x2n1xn1n1xnn1.

解法:行消去法

行消去法:变换行列式使得其中某一行全为零或者几乎全为零
我们打算消去 V n { {V}_{n}} Vn的最后一行。观察并整理得以下材料:

  1. 不同行 i , j i,j i,j之间未知数 x i { {x}_{i}} xi x j { {x}_{j}} xj是不同的,运用行之间的线性抵消难以化简;
  2. 同一行 j j j里的元素都是以 x j { {x}_{j}} xj为底的幂;
  3. 同一行 j j j的元素 x j k { {x}_{j}}^{k} xjk从左至右指数 k k k依次递增。

通过第2点,我们拟采用列之间的线性抵消。通过第3点,为了避免列之间抵消过程中由于 x j = 0 { {x}_{j}}=0 xj=0造成 x j − m ( m > 0 ) { {x}_{j}}^{-m}\left( m>0 \right) xjm(m>0)无意义的问题,我们不会将靠右边的列叠加到靠左边的列,即我们打算将靠左边的列叠加到靠右边的列。而一般的策略有:将固定某一列叠加到其余各列,或者依次将相邻两列进行叠加,经过尝试,我们选择后者,即将第 j ( = n − 1 , n − 2 , ⋯   , 2 , 1 ) j\left( =n-1,n-2,\cdots ,2,1 \right) j(=n1,n2,,2,1)列乘以 ( − x n ) \left( -{ {x}_{n}} \right) (xn)加到第 j + 1 j+1 j+1列上:
V n = ( 1 x 1 x 1 2 ⋯ x 1 n − 3 x 1 n − 2 x 1 n − 1 1 x 2 x 2 2 ⋯ x 2 n − 3 x 2 n − 2 x 2 n − 1 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 1 x n − 1 x n − 1 2 ⋯ x n − 1 n − 3 x n − 1 n − 2 x n − 1 n − 1 1 x n x n 2 ⋯ x n n − 3 x n n − 2 x n n − 1 ) → = − x n c n − 1 → c n ( 1 x 1 x 1 2 ⋯ x 1 n − 3 x 1 n − 2 x 1 n − 2 ( x 1 − x n ) 1 x 2 x 2 2 ⋯ x 2 n − 3 x 2 n − 2 x 2 n − 2 ( x 2 − x n ) ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 1 x n − 1 x n − 1 2 ⋯ x n − 1 n − 3 x n − 1 n − 2 x n − 1 n − 2 ( x n − 1 − x n ) 1 x n x n 2 ⋯ x n n − 3 x n n − 2 0 ) → = − x n c n − 2 → c n − 1 ( 1 x 1 x 1 2 ⋯ x 1 n − 3 x 1 n − 3 ( x 1 − x n ) x 1 n − 2 ( x 1 − x n ) 1 x 2 x 2 2 ⋯ x 2 n − 3 x 2 n − 3 ( x 2 − x n ) x 2 n − 2 ( x 2 − x n ) ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 1 x n − 1 x n − 1 2 ⋯ x n − 1 n − 3 x n − 1 n − 3 ( x n − 1 − x n ) x n − 1 n − 2 ( x n − 1 − x n ) 1 x n x n 2 ⋯ x n n − 3 0 0 ) → ⋯ → = − x n c 1 → c 2 ( 1 x 1 − x n x 1 ( x 1 − x n ) ⋯ x 1 n − 4 ( x 1 − x n ) x 1 n − 3 ( x 1 − x n ) x 1 n − 2 ( x 1 − x n ) 1 x 2 − x n x 2 ( x 2 − x n ) ⋯ x 2 n − 4 ( x 2 − x n ) x 2 n − 3 ( x 2 − x n ) x 2 n − 2 ( x 2 − x n ) ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 1 x n − 1 − x n x n − 1 ( x n − 1 − x n ) ⋯ x n − 1 n − 4 ( x n − 1 − x n ) x n − 1 n − 3 ( x n − 1 − x n ) x n − 1 n − 2 ( x n − 1 − x n ) 1 0 0 ⋯ 0 0 0 ) → = 提 取 每 行 i 公 因 数 ( x i − x n ) 后 , 按 r n 展 开 1 × ( − 1 ) n + 1 × ∏ j = 1 n − 1 ( x j − x n ) ∣ 1 x 1 ⋯ x 1 n − 4 x 1 n − 3 x 1 n − 2 1 x 2 ⋯ x 2 n − 4 x 2 n − 3 x 2 n − 2 ⋮ ⋮ ⋮ ⋮ ⋮ 1 x n − 1 ⋯ x n − 1 n − 4 x n − 1 n − 3 x n − 1 n − 2 ∣ . \begin{aligned} & { {V}_{n}}=\left( \begin{matrix} 1 & { {x}_{1}} & { {x}_{1}}^{2} & \cdots & { {x}_{1}}^{n-3} & { {x}_{1}}^{n-2} & { {x}_{1}}^{n-1} \\ 1 & { {x}_{2}} & { {x}_{2}}^{2} & \cdots & { {x}_{2}}^{n-3} & { {x}_{2}}^{n-2} & { {x}_{2}}^{n-1} \\ \vdots & \vdots & \vdots & {} & \vdots & \vdots & \vdots \\ 1 & { {x}_{n-1}} & { {x}_{n-1}}^{2} & \cdots & { {x}_{n-1}}^{n-3} & { {x}_{n-1}}^{n-2} & { {x}_{n-1}}^{n-1} \\ 1 & { {x}_{n}} & { {x}_{n}}^{2} & \cdots & { {x}_{n}}^{n-3} & { {x}_{n}}^{n-2} & { {x}_{n}}^{n-1} \\ \end{matrix} \right) \\ & \xrightarrow[{=}]{ {-x_n c_{n-1} \to c_n}}\left( \begin{matrix} 1 & { {x}_{1}} & { {x}_{1}}^{2} & \cdots & { {x}_{1}}^{n-3} & { {x}_{1}}^{n-2} & { {x}_{1}}^{n-2}\left( { {x}_{1}}-{ {x}_{n}} \right) \\ 1 & { {x}_{2}} & { {x}_{2}}^{2} & \cdots & { {x}_{2}}^{n-3} & { {x}_{2}}^{n-2} & { {x}_{2}}^{n-2}\left( { {x}_{2}}-{ {x}_{n}} \right) \\ \vdots & \vdots & \vdots & {} & \vdots & \vdots & \vdots \\ 1 & { {x}_{n-1}} & { {x}_{n-1}}^{2} & \cdots & { {x}_{n-1}}^{n-3} & { {x}_{n-1}}^{n-2} & { {x}_{n-1}}^{n-2}\left( { {x}_{n-1}}-{ {x}_{n}} \right) \\ 1 & { {x}_{n}} & { {x}_{n}}^{2} & \cdots & { {x}_{n}}^{n-3} & { {x}_{n}}^{n-2} & 0 \\ \end{matrix} \right) \\ & \xrightarrow[{=}]{ {-x_n c_{n-2} \to c_{n-1}}}\left( \begin{matrix} 1 & { {x}_{1}} & { {x}_{1}}^{2} & \cdots & { {x}_{1}}^{n-3} & { {x}_{1}}^{n-3}\left( { {x}_{1}}-{ {x}_{n}} \right) & { {x}_{1}}^{n-2}\left( { {x}_{1}}-{ {x}_{n}} \right) \\ 1 & { {x}_{2}} & { {x}_{2}}^{2} & \cdots & { {x}_{2}}^{n-3} & { {x}_{2}}^{n-3}\left( { {x}_{2}}-{ {x}_{n}} \right) & { {x}_{2}}^{n-2}\left( { {x}_{2}}-{ {x}_{n}} \right) \\ \vdots & \vdots & \vdots & {} & \vdots & \vdots & \vdots \\ 1 & { {x}_{n-1}} & { {x}_{n-1}}^{2} & \cdots & { {x}_{n-1}}^{n-3} & { {x}_{n-1}}^{n-3}\left( { {x}_{n-1}}-{ {x}_{n}} \right) & { {x}_{n-1}}^{n-2}\left( { {x}_{n-1}}-{ {x}_{n}} \right) \\ 1 & { {x}_{n}} & { {x}_{n}}^{2} & \cdots & { {x}_{n}}^{n-3} & 0 & 0 \\ \end{matrix} \right) \\ & \xrightarrow[{}]{ {}}\cdots \\ & \xrightarrow[{=}]{ {-x_n c_1 \to c_2}}\left( \begin{matrix} 1 & { {x}_{1}}-{ {x}_{n}} & { {x}_{1}}\left( { {x}_{1}}-{ {x}_{n}} \right) & \cdots & { {x}_{1}}^{n-4}\left( { {x}_{1}}-{ {x}_{n}} \right) & { {x}_{1}}^{n-3}\left( { {x}_{1}}-{ {x}_{n}} \right) & { {x}_{1}}^{n-2}\left( { {x}_{1}}-{ {x}_{n}} \right) \\ 1 & { {x}_{2}}-{ {x}_{n}} & { {x}_{2}}\left( { {x}_{2}}-{ {x}_{n}} \right) & \cdots & { {x}_{2}}^{n-4}\left( { {x}_{2}}-{ {x}_{n}} \right) & { {x}_{2}}^{n-3}\left( { {x}_{2}}-{ {x}_{n}} \right) & { {x}_{2}}^{n-2}\left( { {x}_{2}}-{ {x}_{n}} \right) \\ \vdots & \vdots & \vdots & {} & \vdots & \vdots & \vdots \\ 1 & { {x}_{n-1}}-{ {x}_{n}} & { {x}_{n-1}}\left( { {x}_{n-1}}-{ {x}_{n}} \right) & \cdots & { {x}_{n-1}}^{n-4}\left( { {x}_{n-1}}-{ {x}_{n}} \right) & { {x}_{n-1}}^{n-3}\left( { {x}_{n-1}}-{ {x}_{n}} \right) & { {x}_{n-1}}^{n-2}\left( { {x}_{n-1}}-{ {x}_{n}} \right) \\ 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ \end{matrix} \right) \\ & \xrightarrow[{=}]{ {提取每行i公因数\left(x_i-x_n \right)后,按r_n展开}}1\times { {\left( -1 \right)}^{n+1}}\times \prod\limits_{j=1}^{n-1}{\left( { {x}_{j}}-{ {x}_{n}} \right)}\left| \begin{matrix} 1 & { {x}_{1}} & \cdots & { {x}_{1}}^{n-4} & { {x}_{1}}^{n-3} & { {x}_{1}}^{n-2} \\ 1 & { {x}_{2}} & \cdots & { {x}_{2}}^{n-4} & { {x}_{2}}^{n-3} & { {x}_{2}}^{n-2} \\ \vdots & \vdots & {} & \vdots & \vdots & \vdots \\ 1 & { {x}_{n-1}} & \cdots & { {x}_{n-1}}^{n-4} & { {x}_{n-1}}^{n-3} & { {x}_{n-1}}^{n-2} \\ \end{matrix} \right|. \\ \end{aligned} Vn=1111x1x2xn1xnx12x22xn12xn2x1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值