输入格式:
输入第一行给出一个正整数N(≤50),是集合的个数。随后N行,每行对应一个集合。每个集合首先给出一个正整数M(≤104),是集合中元素的个数;然后跟M个[0,109 ]区间内的整数。
之后一行给出一个正整数K(≤2000),随后K行,每行对应一对需要计算相似度的集合的编号(集合从1到N编号)。数字间以空格分隔。
输出格式:
对每一对需要计算的集合,在一行中输出它们的相似度,为保留小数点后2位的百分比数字。
输入样例:
3
3 99 87 101
4 87 101 5 87
7 99 101 18 5 135 18 99
2
1 2
1 3
输出样例:
50.00%
33.33%
两个集合都有的不相等整数的个数就是在交集的基础上去掉重复元素
两个集合一共有的不相等整数的个数就是在并集的基础上去重重复元素,显然set是最好的做法
该题最后一个测试点及其容易超时,如果代码超市不妨对比一下究竟是哪里浪费了多余的时间
#include<iostream>
#include<set>
using namespace std;
set<int> s[55];
int main() {
int n;
cin>>n;
for(int i=0; i<n; i++) {
int k,t;
cin>>k;
for(int j=0; j<k; j++) {
cin>>t;
s[i+1].insert(t);
}
}
int k;
cin>>k;
while(k--)
{
int a,b,cnt=0;
cin>>a>>b;
set<int>::iterator it;
for(it=s[a].begin();it!=s[a].end();it++)
{
if(s[b].find(*it)!=s[b].end())
cnt++;
}
printf("%.2f%%\n",cnt*100*1.0/(s[a].size()+s[b].size()-cnt));
}
}