L2-013 红色警报 (25 分)

本文详细解析了一种用于游戏城防场景的失守警报算法,通过深度优先搜索(DFS)来判断城市间连通性变化,从而决定是否发出警报。文章通过输入输出样例展示了算法的实际应用,并提供了完整的C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述输入样例:

5 4
0 1
1 3
3 0
0 4
5
1 2 0 4 3

输出样例:

City 1 is lost.
City 2 is lost.
Red Alert: City 0 is lost!
City 4 is lost.
City 3 is lost.
Game Over.

该题需要注意的是,在当深搜或广搜求得连通块数量时,只有数量增加才发出警报,否则不发出警报即可,而并非改变就发出警报,我就是陷入了这个误区。。。
由于被攻占城市不重复,所以当城市数量等于K时输出game over。

#include<iostream>
#include<vector>
#include<cstring>
using namespace std;
vector<int> Adj[505];
int vis[505],n;
int lost[505];
void dfs(int s) {
	for(int i=0; i<Adj[s].size(); i++) {
		if(vis[Adj[s][i]]==false&&lost[Adj[s][i]]==false)
		{
			vis[Adj[s][i]]=true;
			dfs(Adj[s][i]);
		}
	}
}
int main() {
	int m;
	cin>>n>>m;
	for(int i=0; i<m; i++) {
		int a,b;
		cin>>a>>b;
		Adj[a].push_back(b);
		Adj[b].push_back(a);
	}
	int k,preliantong=0;
	cin>>k;
	for(int i=0;i<n;i++)
	{
		if(vis[i]==false&&lost[i]==false)
		{
			dfs(i);
			preliantong++;
		}
	}
//	cout<<"原始:"<<preliantong<<endl;
	fill(vis,vis+n,0);
	for(int i=0; i<k; i++) {
		int liantong=0;
		int a;
		cin>>a;
		lost[a]=true;
		for(int j=0; j<n; j++) {
			if(lost[j]==false&&vis[j]==false) {
//				cout<<j<<'*';
				dfs(j);
				liantong++;
			}
		}
		if(liantong<=preliantong) {
			printf("City %d is lost.\n",a,liantong);
		} else {
			printf("Red Alert: City %d is lost!\n",a,liantong);
		}
		preliantong=liantong;
		fill(vis,vis+n,0);
	}
	if(k==n)cout<<"Game Over.";
}
### L2-013 红色警报 Java 编程解决方案 对于L2-013红色警报问题,在Java编程环境中,该挑战通常涉及处理颜色检测以及基于特定条件触发报警机制。考虑到JVM不仅限于执行Java字节码文件,还支持多种语言编译后的字节码文件,这表明可以利用丰富的库资源来实现复杂的功能[^1]。 为了应对这一挑战,一种可能的方法是通过图像处理技术识别目标区域内的红色成。当使用红光照射时,红色物体将会变得更亮,而与其他颜色对比更加明显[^2]。因此,可以通过调整摄像头捕捉到的画面亮度差异来进行判断: ```java import java.awt.Color; import javax.imageio.ImageIO; import java.awt.image.BufferedImage; public class RedAlertDetection { public static boolean isRedAlert(BufferedImage image, int threshold) { long redPixelCount = 0; int totalPixels = image.getWidth() * image.getHeight(); for (int x = 0; x < image.getWidth(); ++x) { for (int y = 0; y < image.getHeight(); ++y) { Color c = new Color(image.getRGB(x, y)); if (c.getRed() > Math.max(c.getBlue(), c.getGreen()) && c.getRed() >= threshold) { redPixelCount++; } } } double ratio = ((double)redPixelCount / totalPixels); return ratio > 0.5; // 如果超过一半像素被认为是红色,则触发警告 } } ``` 上述代码片段展示了如何读取图片并计算其中红色占比的情况。如果红色比例超过了设定阈值(这里假设为50%),则认为存在“红色警报”。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值