DWD层总结

本文介绍DWD层4步建模,其作用包括解析用户行为数据、判空过滤核心数据、用维度模型对业务数据重新建模。DWD层数据源于ODS层,分用户行为和业务数据两类。对用户行为数据,从前端埋点日志获取,用get_json_object函数解析提取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DWD层:4步建模
作用:
1)对用户行为数据进行解析
2)对核心数据进行判空过滤
3)对业务数据采用维度模型重新建模。
一、DWD层数据分析
首先DWD层数据都来源于ODS层。具体数据可分为两类
1)用户行为数据(多为json)
2) 业务数据
1、 用户行为数据
业务行为数据一般都是来源于前端页面的埋点日志信息
分为 启动日志 和普通日志
启动日志表中每行数据对应一个启动记录,一个启动记录应该包含日志中的公共信息和启动信息。先将所有包含start字段的日志过滤出来,然后使用get_json_object函数解析每个字段。
2、分析用户行为数据
主要通过 hive提供的 get_json_object(“json主题”,"$[i]")进行提取分析;将获得的数据进行提取,存入表数据中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值