pytorch合并拆分运算

文章介绍了PyTorch中处理张量的几种关键运算,包括Cat用于沿指定维度拼接张量,要求非拼接维度一致;stack则是在张量的现有维度间插入新维度,所有维度需相同;而split函数用于拆分张量,指定尺寸和维度即可进行分割。这些操作在处理多维数据如图像通道时尤为重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pytorch合并拆分运算

简述

  • 如果维度少了直接添加一个维度
  • 如果每一个维度的偏少,直接扩展每一个维度的元素数量

在这里插入图片描述

Cat合并操作

在这里插入图片描述

在这里插入图片描述

cat操作的维度必须是一致的,只能有一个维度不一样(拼接的维度),但是其他的维度都必须是一样的

案例:为一张RGB照片再添加一个通道变成四通道

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HVFxDedf-1686399780061)(../images/1291c2fa7790c1978bedac952b7042bba6b9c24b3b41164cbe00416f8156bdbb.png)]

stack-插入新的维度操作

stack操作两个张量的维度必须全部保持一致

在这里插入图片描述

stack操作是创建一个新的维度

splict拆分操作

第一个参数是拆分的尺寸,第二个参数是拆分的维度
在这里插入图片描述