[论文笔记] Detect to Track and Track to Detect 阅读笔记

本文介绍了一种名为DetecttoTrack和TracktoDetect的联合框架,该框架能够在视频中同时进行物体检测与跟踪。通过一种新的ConvNet架构实现了基于帧的物体检测及跨帧的跟踪回归,并引入了相关特征来辅助跟踪过程,最终在视频层面产生了高精度的检测结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Detect to Track and Track to Detect(ICCV 2017)

论文链接:论文链接
代码链接:代码链接

摘要

  • 大部分检测和跟踪的方法都很繁琐,本文提出了一种ConvNet架构,它可以同时进行检测和跟踪
  • 贡献
    • 建立一个ConvNet架构,用于同时检测和跟踪,使用多任务目标进行基于帧的物体检测和跨帧跟踪回归
    • 引入代表物体在不同时间内共同出现的相关特征,以帮助ConvNet在追踪过程中发挥作用
    • 将基于跨帧追踪的帧级检测联系起来,在视频层面上产生高精度的检测

引言

  • 视频目标检测难点
    在这里插入图片描述

D&T Approach(Detect and Track)

D&T overview

在这里插入图片描述

Object detection and tracking in R-FCN

在这里插入图片描述

Multimask detection and tracking objective

Correlation features for object tracking

在这里插入图片描述

实验结果

  • ImageNet VID 验证集上的对比
    在这里插入图片描述
  • 不同 backbone 的影响
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值