
因数&质因数
文章平均质量分 79
因数分解,质因数分解
Happig丶
我的孤独,虽败犹荣
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
2021年“图森未来杯”全国程序设计邀请赛 D. Divide(阶乘质因数分解)
传送门题目大意给出两段区间[l1,r1],[l2,r2][l_1, r_1] ,[l_2, r_2][l1,r1],[l2,r2],设d1=∏i=l1r1,d2=∏i=l2r2d_1 = \prod_{i = l_1}^{r_1}, d_2 = \prod_{i = l_2}^{r_2}d1=∏i=l1r1,d2=∏i=l2r2,问是否d1∣d2d_1 | d_2d1∣d2,即前者整除后者。解题思路这题拿到思路后一直想着对每个数质因数分解的方法去求,但是无奈要么TLET原创 2021-04-11 21:55:56 · 388 阅读 · 0 评论 -
Codeforces Round #694 (Div. 2) D. Strange Definition(平方数在质因数分解下的意义)
传送门题目大意给出一个序列,定义序列中的两个数a,ba,ba,b是adjacentadjacentadjacent当且仅当lcm(a,b)gcd(a,b)\frac{lcm(a,b)}{gcd(a,b)}gcd(a,b)lcm(a,b)是平方数。现在每秒会发生如下操作,设序列中的每个数aia_iai和序列中的如下jjj个数{b1,b2,...,bj}\{b_1,b_2,...,b_j\}{b1,b2,...,bj}为adjacentadjacentadjacent(包括它自己),那么aia_原创 2021-01-14 17:13:47 · 213 阅读 · 0 评论 -
2019 ICPC 徐州区域赛 - E Multiply(Pollard-Rho质因数分解)
题目链接这个题其实并不太难的,就是应用到质因数分解和求n!对于某个质因数能分解出多少个关于n!的质因数分解:例如求在8!中2的个数:首先我们先计算出2的倍数的个数:8/2=4其次我们计算出4的倍数的个数: 8/4=2最后计算出8的倍数的2的个数: 8/8=14+2+1,一共7个2出现了即:f(x)=[n/(x1)]+[n/(x2)]+[n/(x3)]+…(直到x的某次幂大于n...原创 2019-12-15 15:45:52 · 640 阅读 · 0 评论 -
质因数分解
Pollard Rho质因数分解1975年,John M.Pollard提出了第二种因数分解的方法,Pollard Rho快速因数分解。该算法时间复杂度为O(n^0.25)分解质因数过程:对n进行分解质因数,应先找到一个最小的质数k,然后按下述步骤完成:如果这个质数恰等于n,则说明分解质因数的过程已经结束,打印出即可。如果n>k,但n能被k整除,则应打印出k的值,并用n除以k的商作...原创 2020-01-28 19:55:32 · 525 阅读 · 0 评论 -
UVa1521 GCD Guessing Game(唯一分解定理+素筛)
题目链接Paul had a birthday yesterday, and they were playing a guessing game there with Andrew: Andrew was trying to guess Paul’s age. Andrew knew that Paul’s age is an integer between 1 and n, inclusive...原创 2020-03-06 20:20:18 · 322 阅读 · 0 评论 -
n的阶乘在m进制下结尾0的个数
推导首先举几个例子:1000在二进制下可以表示为1×23400在十进制下可以表示为4×10220在6进制下表示为2×61因此不难发现如果要求一个数n在m下结尾0的个数,实际上就是求出满足n = t*mk最大的k,但是如果是n的阶乘呢?需要一个一个求吗?先看下面⬇️n!的所有质因数例:求在8!中2的个数:首先我们先计算出2的倍数的个数:8/2=4其次我们计算出4的倍...原创 2020-04-15 10:07:03 · 1862 阅读 · 2 评论 -
牛客算法周练——水题water(数论+n皇后位运算算法)
题目链接题目不难看懂,观察上述式子,给出了f(1)=1,f(2)=1,那么继续往后推几个,可以发现是斐波那契数列。因此对于上述式子如果x输入的x是斐波那契数的话,就直接求,方法详见传送门,对100之内的斐波那契数打表即可,因为第九十多个好像就到了1e18左右。如果该数不是斐波那契数,显然求n皇后问题,但是这里n最多到了13,普通的求解最多到12就跑不动了,因此使用位运算的算法打表即可(不会自...原创 2020-04-15 13:26:56 · 223 阅读 · 0 评论 -
POJ - 2429 GCD & LCM Inverse(Pollard_rho质因数分解+搜索)
传送门题目大意:给出两个数的gcd,lcmgcd,lcmgcd,lcm,问这两个数为多少时使得二者的和最小分析:根据最大公因数的性质,两个数的gcdgcdgcd为其相同质因子指数的minminmin;同理最小公倍数的性质,两个数的lcmlcmlcm为其相同质因子指数的maxmaxmax。那么显然我们对gcd,lcmgcd,lcmgcd,lcm分别质因数分解,最后操作分解出来的lcmlcmlcm中不同的质因子,然后dfsdfsdfs求出最小的a+ba+ba+b显然分解两个数太麻烦了,因为lcmlc原创 2020-08-19 18:54:20 · 214 阅读 · 0 评论 -
洛谷 P2508 [HAOI2008]圆上的整点(数学证明+质因数分解)
题目链接对nnn进行唯一分解,得到若干素数的幂乘积pia1×pia2×...pnanp_i^{a_1} \times p_i^{a_2} \times...p_n^{a_n}pia1×pia2×...pnan,那么答案为:f(x)=∏i=1ng(pi,ai)f(x)=\prod_{i=1}^n g(p_i,a_i)f(x)=∏i=1ng(pi,ai)其中g(pi,ai)={1forpi=21forpi%4=3 & ai%2=00forpi%4=3 原创 2020-08-25 16:43:49 · 365 阅读 · 0 评论 -
HDU - 4135 Co-prime(容斥+质因数分解)
传送门题目大意求[l,r][l,r][l,r]中和nnn互质的数的个数解题思路根据容斥定理问题可以转化为[1,x][1,x][1,x]中和nnn互质的个数,然后solve(r)−solve(l−1)solve(r)-solve(l-1)solve(r)−solve(l−1)即可。但是互质的数不好求,问题又变成了求出不互质的数的个数,然后拿nnn减去就得到了互质的个数。x,yx,yx,y互质等价于gcd(x,y)=1gcd(x,y)=1gcd(x,y)=1,考虑最大公约数在质因数分解下的意义,也就原创 2020-10-08 16:40:35 · 144 阅读 · 0 评论 -
HDU - 1299 Diophantus of Alexandria(因数分解求方程整数解的个数)
传送门题目大意给定nnn,求出1x+1y=1n\frac{1}{x}+\frac{1}{y}=\frac{1}{n}x1+y1=n1的正整数解的个数解题思路一开始我以为x,yx,yx,y其中有一个一定是nnn的倍数,但是后来才发现如果这样的话答案应该就是nnn的因子个数,但是第二个并不是这样的。又从其他地方下手找找,然鹅也没有找到正确解法正解是:不难发现x,yx,yx,y均大于nnn且一定有一个较大者。设x≤yx \leq yx≤y,令y=n+ky=n+ky=n+k,代入得到x=n2k+n原创 2020-10-19 17:35:05 · 177 阅读 · 0 评论 -
LightOJ - 1236 Pairs Forming LCM(质因数分解找规律+容斥)
传送门题目大意求∑i=1n∑j=in[lcm(i,j)==n],n≤1e14\sum_{i=1}^{n}\sum_{j=i}^{n}[lcm(i,j)==n],n\leq 1e^{14}∑i=1n∑j=in[lcm(i,j)==n],n≤1e14解题思路一开始以为是莫比乌斯反演,推了一下发现推不动了。尝试找下规律,对nnn质因数分解n=p1a1p2a2...pnann=p_1^{ a_1}p_2^{ a_2}...p_n^{ a_n}n=p1a1p2a2...pnan,然后考虑lc原创 2020-10-21 14:23:05 · 327 阅读 · 0 评论 -
LightOJ - 1138 Trailing Zeroes (III)(n的阶乘结尾0的个数+二分)
传送门题目大意给出qqq,我们需要求出最小的nnn使得n!n!n!结尾有qqq个000题目大意考虑nnn的阶乘结尾000的个数,实际上就是看最后乘了多少个101010,也就是将n!n!n!质因数分解得出的2x5y2^x5^y2x5y,结尾000的个数就是min{x,y}min\{x,y\}min{x,y},手推前几个阶乘,不难发现x>yx >yx>y一定成立,因此我们只需考虑555的个数。对于n!n!n!内含有多少质数的乘积,这是一个比较巧妙的数论知识:首先看第一层,也就是只原创 2020-10-23 09:16:04 · 187 阅读 · 0 评论 -
第十一届蓝桥杯大赛软件类决赛 C/C++ 大学 B 组 试题 C: 阶乘约数(n!质因数分解)
解题思路实际上就是一个数学知识加上因数个数定理的裸题了。看到约数个数,我们不难想到约数个数定理:设一个数xxx的唯一分解式为p1a1p2a2...pnanp_1^{a_1}p_2^{a_2}...p_n^{a_n}p1a1p2a2...pnan,那么其因数个数为(a1+1)(a2+1)..(an+1)(a_1+1)(a_2+1)..(a_n+1)(a1+1)(a2+1)..(an+1)但是阶乘数很大,显然没有办法求出阶乘然后质因数分解。考虑n!n!n!的所有质因数都不会超过nn.原创 2020-11-14 20:00:38 · 1044 阅读 · 0 评论 -
LightOJ - 1356 Prime Independence(二分图最大独立集+质因数分解)
传送门题目大意给出一个序列,选出一个最大的集合,使得这个集合中的任意两个数,都不存在素数倍关系。一对数x,yx,yx,y有素数倍关系,即x=p∗y(y=p∗x)x=p*y(y=p*x)x=p∗y(y=p∗x)。解题思路两个数有素数倍关系,那么这个质数ppp有很多取值的可能,而且即使找到给出序列中所有的关系,正常思路也无从下手…使用二分图去求解这样的给定限制的集合,这个思路真的很神奇。为什么能构成二分图——从质因数的奇偶性下手!不难知道一个数如果乘上一个素数后,那么它的质因数个数的奇偶性一定发生变原创 2020-11-16 10:47:57 · 233 阅读 · 0 评论