
机器学习
文章平均质量分 91
AAA小土豆
江苏大学物联网学长
个人主页:arorms.cn
QQ:1272369577
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Tensorflow 中的卷积神经网络(CNN)
文章介绍了卷积神经网络(CNN)在 TensorFlow 中的实现,首先解释了神经网络的基本概念,如前向传播、反向传播和更新规则。接着,介绍了卷积神经网络的关键组成部分——卷积层和池化层,讲解了它们如何通过卷积核提取局部特征并减少数据维度,提升图像处理效果。文章还通过 MNIST 数据集展示了如何使用 TensorFlow 构建经典神经网络和卷积神经网络,并比较了两者在图像分类任务中的表现,凸显了 CNN 在图像处理上的优势。原创 2025-02-02 21:03:26 · 988 阅读 · 1 评论 -
Sklearn 中的逻辑回归
逻辑回归主要用于处理二分类问题。二分类问题对于模型的输出包含 0 和 1,是一个不连续的值。分类问题的结果一般不能由线性函数求出。这里就需要一个特别的函数来求解,这里引入一个新的函数 Sigmoid 函数,也成为逻辑函数。hθxgθTxzθTxgz1e−z1这里函数gz将任何实数映射到了01区间中,从而将任何值函数转换为适合分类的函数。这里我们将线性回归模型函数插入到这个函数中形成新的逻辑回归模型。如图所示,转换后可以看到在x0。原创 2025-01-26 15:21:22 · 1344 阅读 · 0 评论 -
Sklearn 中的线性回归模型
Sklearn 机器学习的入门算法,线性回归。原创 2025-01-22 15:08:38 · 1238 阅读 · 0 评论 -
机器学习-识别手写数字
利用tensorflow构建神经网络实现识别手写数字。原创 2024-08-22 20:15:15 · 590 阅读 · 0 评论 -
机器学习-神经网络
介绍了神经网络的基础,利用python,tensorlfow中keras快速构建一个神经网络。面向基础机器学习学者,例举了一个简单的二分类问题并用神经网络解决。原创 2024-08-15 22:31:57 · 954 阅读 · 0 评论 -
机器学习-逻辑回归
逻辑回归(Logistic Regression)是一种分类问题的模型。逻辑回归实际是一种分类而不是回归问题,称为回归只是因为他的历史原因。在二分类问题(Binary Classification)中,我们需要根据输入来判断输出结果是与否,或者说输出值y的值只包含1或者0。一种方法是使用之前的线性回归模型,并定义一个临界值。然而这种方法已经不能满足问题所需,因为分类实际上不是一个线性函数。这里就需要利用其他函数,构建逻辑回归模型来解决二分类问题。原创 2024-08-05 23:25:48 · 892 阅读 · 1 评论