研究生系统化入门教程(二)【机器学习】详解特征工程:特征抽取(以TF-IDF为例),特征预处理(归一化、标准化),特征降维,主成分分析;| 常用API和模块调用 | 低方差特征过滤

 
“已经活了七十二岁,依然像是昨天的事;居民点的林荫小路,在歇晌的时间,白人居住区,道旁开满金凤花的大街,阗无行人。”——杜拉斯《物质生活》

 
在这里插入图片描述

 

回顾:

        

一、接上篇:特征工程

1.1 Tf-idf 文本特征提取

1.1.1 主要思想及作用

  • TF-IDF的主要思想是:如果某个词或短语 在一篇文章中出现的概率高,并且在其他文章中很少出现,则认为此词或者短语具有
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追光者♂

谢谢你呀!一起加油!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值