【R语言实验】Fisher判别

该博客介绍了如何使用R语言进行Fisher判别和Bayes判别,强调理解这两种判别方法的原理,并通过实验展示了R语言的实现。实验结果显示,在35个数据样本中,仅出现2个误判,误判率为5%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**实验目的:了解Fisher判别的原理,明白R语言实现Fisher判别的函数
了解Bayes判别的原理,明白R语言实现Bayes判别的函数
实验要求: 5.4
实验素材:在我的资源中ex.5.4
在这里插入图片描述

实验代码:**

1、读取数据并查看数据
> d5.4<-read.table("clipboard",header=T)
> d5.4
   X.编号 类别  x1  x2  x3  x4 x5   x6  x7
1       1    1 6.6  39 1.0 6.0  6 0.12  20
2       2    1 6.6  39 1.0 6.0 12 0.12  20
3       3    1 6.1  47 1.0 6.0  6 0.08  12
4       4    1 6.1  47 1.0 6.0 12 0.08  12
5       5    1 8.4  
Bayes判别法是一种统计学习方法,用于将数据分为不同的类别。在R语言中,可以使用bayesDiscriminant2.R脚本来实现Bayes判别法。首先,需要导入数据并将其分为训练样本和待判断样本。然后,调用distinguish.bayes函数来进行Bayes判别。这个函数会根据训练样本的特征和类别信息,计算出一个判别函数,然后使用这个判别函数对待判断样本进行分类。\[1\] 另外,还可以使用distanceDiscriminant2.R脚本来进行多群体距离判别。这种方法是基于样本之间的距离来进行分类的。首先,需要导入数据并将其分为训练样本和待判断样本。然后,调用distinguish.distance函数来进行多群体距离判别。这个函数会计算出样本之间的距离,并根据距离来进行分类。\[3\] 总结起来,Bayes判别法和多群体距离判别是两种常用的分类方法,在R语言中可以使用相应的脚本来实现。 #### 引用[.reference_title] - *1* *3* [R语言实战——距离判别、贝叶斯判别Fisher判别理论详细推导与R语言实现](https://blog.csdn.net/qq_41196612/article/details/105339511)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [R语言——判别分析之Bayes 判别实验](https://blog.csdn.net/qq_45947664/article/details/124692870)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值