【数学模型】数学模型的简单认识

本文介绍了数学建模的重要性和应用,从现实对象到数学模型的转换过程,以及数学建模的意义、方法和步骤。通过航行问题的实例展示了建立和求解数学模型的过程,强调了数学模型在各个领域的广泛影响和关键作用。数学建模不仅是一种技术,更是一种艺术,需要通过实践来提升理解和应用能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

数学建模取得光辉成功的一个著名的例子是行星运动规律的发现。开普勒(Kepler)根据他的老师第谷近30年天文观测的大量数据,用了10年时间总结出行星运动的三大定律。牛顿在此基础上提出与距离平方成反比的万有引力公式,利用运动三大定律证明了开普勒的结论,严格推导出行星运动的三大定律,成功地解释并预测了行星运动规律,也证明了他建立的数学模型的正确性。

进入21世纪后,随着数学和其他学科的渗透,以及计算机技术的飞速发展,数学建模越来越受到人们的重视,数学模型的应用领域更加广泛。

模型是相对于原型而言。原型是指人们在现实世界中从事研究、生成、管理的实际对象,在科技领域通常指各种系统、过程。

纵观数学的发展历史,数千年来人类对于数学的研究一直是沿着纵横两个方向进行的。
  在纵向上,探讨客观世界在量的方面的本质和规律,发现并积累数学知识,然后运用公理化等方法建构数学的理论体系,这是对数学科学自身的研究。
  在横向上,则运用数学的知识去解决各门科学和人类社会生产与生活中的问题,这里首先要运用数学模型的方法建构实际问题的数学模型,然后运用数学的理论和方法导出结果,再返回原问题实现实际问题的解决,这是对数学科学应用的研究。

“科学技术是第一生产力”这一重要的科学论断被越来越多的人所接受。
  在西方国家的国民经济增长中百分之七十以上依靠新科学技术。
  我们所处的信息时代的一个重要特点是数学的应用向一切领域渗透,高科技与数学的关系日益密切,产生了许多与数学相结合的新学科,如数学化学、数学生物学、数学地质学、数学社会科学等等。
  
如今社会日益数学化,一些有远见的科学家就曾深刻指出:“信息时代高科技的竞争本质上是数学的竞争。”“当今如此受到称颂的‘高技术’本质上是一种数学技术”。
科学的数学化是当代科学发展的一个主要趋向,它已经在不同的程度上涉及一切科学领域和人类活动的各个方面。
数学模型是数学科学联结其他非数学科学的中介和桥梁,它不仅是对实际问题的数学描述,而且是对实际问题进行理论分析和科学研究的有力工具。
  因此,建立数学模型或数学建模是发展

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值