引言
数学建模取得光辉成功的一个著名的例子是行星运动规律的发现。开普勒(Kepler)根据他的老师第谷近30年天文观测的大量数据,用了10年时间总结出行星运动的三大定律。牛顿在此基础上提出与距离平方成反比的万有引力公式,利用运动三大定律证明了开普勒的结论,严格推导出行星运动的三大定律,成功地解释并预测了行星运动规律,也证明了他建立的数学模型的正确性。
进入21世纪后,随着数学和其他学科的渗透,以及计算机技术的飞速发展,数学建模越来越受到人们的重视,数学模型的应用领域更加广泛。
模型是相对于原型而言。原型是指人们在现实世界中从事研究、生成、管理的实际对象,在科技领域通常指各种系统、过程。
纵观数学的发展历史,数千年来人类对于数学的研究一直是沿着纵横两个方向进行的。
在纵向上,探讨客观世界在量的方面的本质和规律,发现并积累数学知识,然后运用公理化等方法建构数学的理论体系,这是对数学科学自身的研究。
在横向上,则运用数学的知识去解决各门科学和人类社会生产与生活中的问题,这里首先要运用数学模型的方法建构实际问题的数学模型,然后运用数学的理论和方法导出结果,再返回原问题实现实际问题的解决,这是对数学科学应用的研究。
“科学技术是第一生产力”这一重要的科学论断被越来越多的人所接受。
在西方国家的国民经济增长中百分之七十以上依靠新科学技术。
我们所处的信息时代的一个重要特点是数学的应用向一切领域渗透,高科技与数学的关系日益密切,产生了许多与数学相结合的新学科,如数学化学、数学生物学、数学地质学、数学社会科学等等。
如今社会日益数学化,一些有远见的科学家就曾深刻指出:“信息时代高科技的竞争本质上是数学的竞争。”“当今如此受到称颂的‘高技术’本质上是一种数学技术”。
科学的数学化是当代科学发展的一个主要趋向,它已经在不同的程度上涉及一切科学领域和人类活动的各个方面。
数学模型是数学科学联结其他非数学科学的中介和桥梁,它不仅是对实际问题的数学描述,而且是对实际问题进行理论分析和科学研究的有力工具。
因此,建立数学模型或数学建模是发展