学习日记,嵌入式机器学习领域edge impluse 的使用(一)

本文介绍如何使用EdgeImpulse平台在嵌入式设备上实现环境声音的分类与识别,涵盖模型训练、特征提取及部署等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近任务需求,需要在嵌入式平台上对环境声音进行分类,识别,同时也要低功耗运行,因此,找到了Edge Impluse 这个平台,该平台基于tesorflow架构的,也可以自己导入pytorch模型,通过量化,可以将模型量化到很小,在一些单片机上也可以运行
入门第一步,进入网站,注册,自动进入新手教程,新手教程是自己训练一个语音唤醒的模型。简单的步骤,跳过。
添加数据集
该步骤自动加噪,生成更多的样本进行学习。
设计网络结构
在这里设置网络结构,第一步设计时域信息,第二步设计声学信息提取,第三步设计神经网络分类器。最后保存参数即可。
接下来,就是提取特征
特征提取
点击一下生成特征在这里插入图片描述
下一步设计mel-filter的参数,不知道怎么设计就默认就好
这一步是开始训练神经网络,设置一些学习率和训练轮数,一般不能设置得太大,训练时间不能超过20分钟
在这里插入图片描述
训练完之后可以进行模型测试,模型部署。先写那么多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值