Pytorch-Padding Layers


1.nn.ReflectionPad2d()

torch.nn.ReflectionPad2d() 是 PyTorch 中的一个模块,用于执行二维反射填充操作。反射填充是一种常用的填充方法,它在输入张量的边界周围以对称方式复制边缘值来扩展输入的尺寸。

torch.nn.ReflectionPad2d(padding)
"""
参数:padding:指定填充的大小。可以是一个整数,表示在每个边界上应用相同的填充大小。也可以是一个长度为 4 的元组 (pad_left, pad_right, pad_top, pad_bottom),分别表示左、右、上、下四个方向的填充大小。
返回值:返回一个执行反射填充操作的模块。
"""
import torch
import torch.nn as nn

# 创建一个输入大小为 (batch_size=1, channels=3, height=4, width=4) 的张量
input_tensor = torch.randn(1, 3, 4, 4)

# 创建一个反射填充层,指定填充大小为 1
reflection_pad = nn.ReflectionPad2d(1)

# 应用反射填充操作
output = reflection_pad(input_tensor)

print("Input shape:", input_tensor.shape)
print("Output shape:", output.shape)
print("Output tensor:")
print(output)
Input shape: torch.Size([1, 3, 4, 4])
Output shape: torch.Size([1, 3, 6, 6])
Output tensor:
tensor([[[[-0.4726, -0.9318, -0.4726,  0.0358, -1.3965,  0.0358],
          [ 0.6456, -0.0962,  0.6456,  0.1090,  1.0219,  0.1090],
          [-0.4726, -0.9318, -0.4726,  0.0358, -1.3965,  0.0358],
          [ 2.1055,  0.1147,  2.1055, -2.0517,  1.6568, -2.0517],
          [ 0.2304,  0.2164,  0.2304, -0.8812, -0.2803, -0.8812],
          [ 2.1055,  0.1147,  2.1055, -2.0517,  1.6568, -2.0517]],

         [[ 0.3650,  0.5981,  0.3650,  0.2102,  1.7905,  0.2102],
          [-0.0200, -0.0328, -0.0200,  0.2043, -0.0937,  0.2043],
          [ 0.3650,  0.5981,  0.3650,  0.2102,  1.7905,  0.2102],
          [ 0.5632,  1.2948,  0.5632, -0.0395,  0.5825, -0.0395],
          [ 0.7248, -0.5541,  0.7248, -0.2897,  0.5524, -0.2897],
          [ 0.5632,  1.2948,  0.5632, -0.0395,  0.5825, -0.0395]],

         [[ 1.3675, -1.0789,  1.3675,  0.1664,  0.4726,  0.1664],
          [ 0.5879, -1.2825,  0.5879, -0.0681, -1.1589, -0.0681],
          [ 1.3675, -1.0789,  1.3675,  0.1664,  0.4726,  0.1664],
          [-0.2540, -0.5877, -0.2540,  
好的,以下是一个输入图像数据集的卷积GRU的PyTorch-CPU代码示例: ```python import torch.nn as nn class ConvGRU(nn.Module): def __init__(self, input_dim, hidden_dim, kernel_size, num_layers): super(ConvGRU, self).__init__() self.input_dim = input_dim self.hidden_dim = hidden_dim self.kernel_size = kernel_size self.num_layers = num_layers padding = kernel_size // 2 # Create list of convolutional GRU layers self.conv_gru_layers = nn.ModuleList() for i in range(self.num_layers): input_dim = self.input_dim if i == 0 else self.hidden_dim conv_gru_layer = ConvGRULayer(input_dim, self.hidden_dim, self.kernel_size, padding) self.conv_gru_layers.append(conv_gru_layer) def forward(self, x, hidden_state=None): current_hidden_state = hidden_state # Iterate through layers for layer_idx in range(self.num_layers): conv_gru_layer = self.conv_gru_layers[layer_idx] conv_input = x if layer_idx == 0 else current_hidden_state # Run convolutional GRU layer layer_hidden_state = conv_gru_layer(conv_input, current_hidden_state) if current_hidden_state is None: current_hidden_state = layer_hidden_state else: current_hidden_state = current_hidden_state + layer_hidden_state return current_hidden_state class ConvGRULayer(nn.Module): def __init__(self, input_dim, hidden_dim, kernel_size, padding): super(ConvGRULayer, self).__init__() self.input_dim = input_dim self.hidden_dim = hidden_dim self.kernel_size = kernel_size self.padding = padding # Convolutional layers to compute gates self.conv_gates = nn.Conv2d(input_dim + hidden_dim, 2 * hidden_dim, kernel_size, padding) # Convolutional layer to compute candidate hidden state self.conv_candidate = nn.Conv2d(input_dim + hidden_dim, hidden_dim, kernel_size, padding) def forward(self, x, hidden_state=None): if hidden_state is None: hidden_state = torch.zeros(1, self.hidden_dim, x.size(2), x.size(3)) # Concatenate inputs along channel dimension combined_input = torch.cat([x, hidden_state], dim=1) # Compute gates gate_activations = self.conv_gates(combined_input) reset_gate, update_gate = gate_activations.chunk(2, dim=1) reset_gate = torch.sigmoid(reset_gate) update_gate = torch.sigmoid(update_gate) # Compute candidate hidden state combined_input_reset = torch.cat([x, hidden_state * reset_gate], dim=1) candidate = self.conv_candidate(combined_input_reset) candidate = torch.tanh(candidate) # Compute new hidden state new_hidden_state = hidden_state * (1 - update_gate) + candidate * update_gate return new_hidden_state ``` 此代码实现了一个由多个卷积GRU层组成的ConvGRU网络,可以处理输入图像序列。 注意:这里的代码仅供参考,实现细节和输入数据格式等取决于具体的应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值