class Solution {
int row;
int col;
public static final int[][] DIRECTIONS = {{0,1},{0,-1},{-1,0},{1,0}};
public int[] hitBricks(int[][] grid, int[][] hits) {
row = grid.length;
col = grid[0].length;
int[][] copy = new int[row][col];
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
copy[i][j] = grid[i][j];
}
}
//在copy中将墙击碎
for(int i = 0;i < hits.length;i++)
copy[hits[i][0]][hits[i][1]] = 0;
int size = row*col;
UnionFind uf = new UnionFind(size+1);
for(int i =0;i<col;i++){
if(copy[0][i] == 1)
uf.union(i,size);
}
for (int i = 1; i < row; i++) {
for (int j = 0; j < col; j++) {
if (copy[i][j] == 1) {
// 如果上方也是砖块
if (copy[i - 1][j] == 1) {
uf.union(getIndex(i - 1, j), getIndex(i, j));
}
// 如果左边也是砖块
if (j > 0 && copy[i][j - 1] == 1) {
uf.union(getIndex(i, j - 1), getIndex(i, j));
}
}
}
}
int[] res = new int[hits.length];
for(int i =hits.length-1;i>=0 ;i--){
int x = hits[i][0];
int y = hits[i][1];
if(grid[x][y] == 0)//本身就没有砖 跳过
continue;
int origin = uf.getSize(size);
if(x == 0)
uf.union(y,size);
for(int j =0;j<DIRECTIONS.length;j++){
int[] DIRECTION = DIRECTIONS[j];
int newX = x + DIRECTION[0];
int newY = y + DIRECTION[1];
if(isArea(newX,newY) == true && copy[newX][newY] == 1){
uf.union(getIndex(newX,newY),getIndex(x,y));
//uf.union(getIndex(x,y),getIndex(newX,newY));
}
}
int current = uf.getSize(size);
res[i] = Math.max(0, current - origin - 1);
// 真正补上这个砖块
copy[x][y] = 1;
}
return res;
}
private boolean isArea(int x, int y) {
return x >= 0 && x < row && y >= 0 && y < col;
}
private int getIndex(int x, int y) {
return x * col + y;
}
private class UnionFind {
/**
* 当前结点的父亲结点
*/
private int[] parent;
/**
* 以当前结点为根结点的子树的结点总数
*/
private int[] size;
public UnionFind(int n) {
parent = new int[n];
size = new int[n];
for (int i = 0; i < n; i++) {
parent[i] = i;
size[i] = 1;
}
}
/**
* 路径压缩,只要求每个不相交集合的「根结点」的子树包含的结点总数数值正确即可,因此在路径压缩的过程中不用维护数组 size
*
* @param x
* @return
*/
public int find(int x) {
if (x != parent[x]) {
parent[x] = find(parent[x]);
}
return parent[x];
}
public void union(int x, int y) {
int rootX = find(x);
int rootY = find(y);
if (rootX == rootY) {
return;
}
parent[rootX] = rootY;
// 在合并的时候维护数组 size
size[rootY] += size[rootX];
}
/**
* @param x
* @return x 在并查集的根结点的子树包含的结点总数
*/
public int getSize(int x) {
int root = find(x);
return size[root];
}
}
}