【蓝桥杯 每日一练】螺旋折线

本文介绍了一种螺旋折线经过平面内所有整点恰好一次的路径,并提供了一个算法来计算任意整点到原点的螺旋折线段长度。通过观察规律,文章给出了针对不同象限内的整点坐标(X,Y)的具体计算公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

标题:螺旋折线

如图p1.pgn所示的螺旋折线经过平面上所有整点恰好一次。
对于整点(X, Y),我们定义它到原点的距离dis(X, Y)是从原点到(X, Y)的螺旋折线段的长度。

例如dis(0, 1)=3, dis(-2, -1)=9

给出整点坐标(X, Y),你能计算出dis(X, Y)吗?

【输入格式】
X和Y

对于40%的数据,-1000 <= X, Y <= 1000
对于70%的数据,-100000 <= X, Y <= 100000
对于100%的数据, -1000000000 <= X, Y <= 1000000000

【输出格式】
输出dis(X, Y)

【输入样例】
0 1

【输出样例】
3

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。

所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
不要使用package语句。不要使用jdk1.7及以上版本的特性。
主类的名字必须是:Main,否则按无效代码处理。

分析

找规律,以y轴为分界线

当y >= 0 时:

首先找出几个特殊点:
dis(0,0) = 0;
dis(0,1) = 1 + 1 + 1;
dis(1,1) = 1 + 1 + 1 +1;
dis(0,2) = 1 + 1 + 2 + 2 + 3 + 3 + 2;
dis(2,2) = 1 + 1 + 2 + 2 + 3 + 3 + 2 + 2;
dis(0,3) = 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5 + 3;
dis(3,3) = 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5 + 3 + 3;
(其余式子也是这个规律)
规律为 两个以2y - 1为通式的等差数列的前n项和再加上y再加X;
即dis = (2 * y) * (2 * y - 1) + y + x;

当y < 0 时:

同理可得:
dis(0,-1) = 1 + 1 + 2 + 2 + 1;
dis(-1,-1) = 1 + 1 + 2 + 2 + 1 - (-1);
dis(0,-2) = 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 2;
dis(-2,-2) = 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 2 - (-2);
dis(0,-3) = 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5 + 6 + 6 + 3;
dis(-3,-3) = 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5 + 6 + 6 + 3 - (-3) ;
首先对y取绝对值,dis为两个以2|y|为通式的等差数列前n项和再加上|y|减去x;
即:dis = (2 * y) * (2 * y + 1) + y - x;

import java.util.Scanner;

public class LuoXuan {

	public static int dis(int x, int y) {
		int sum = 0;
		if (y > 0) {
			sum = (2 * y) * (2 * y - 1) + x + y;
		} else {
			y = Math.abs(y);
			sum = (2 * y) * (2 * y + 1) + y - x;
		}
		return sum;

	}

	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		int x = sc.nextInt();
		int y = sc.nextInt();
		System.out.println(dis(x, y));
		sc.close();
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

莫余

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值