标题:螺旋折线
如图p1.pgn所示的螺旋折线经过平面上所有整点恰好一次。
对于整点(X, Y),我们定义它到原点的距离dis(X, Y)是从原点到(X, Y)的螺旋折线段的长度。
例如dis(0, 1)=3, dis(-2, -1)=9
给出整点坐标(X, Y),你能计算出dis(X, Y)吗?
【输入格式】
X和Y
对于40%的数据,-1000 <= X, Y <= 1000
对于70%的数据,-100000 <= X, Y <= 100000
对于100%的数据, -1000000000 <= X, Y <= 1000000000
【输出格式】
输出dis(X, Y)
【输入样例】
0 1
【输出样例】
3
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
不要使用package语句。不要使用jdk1.7及以上版本的特性。
主类的名字必须是:Main,否则按无效代码处理。
分析
找规律,以y轴为分界线
当y >= 0 时:
首先找出几个特殊点:
dis(0,0) = 0;
dis(0,1) = 1 + 1 + 1;
dis(1,1) = 1 + 1 + 1 +1;
dis(0,2) = 1 + 1 + 2 + 2 + 3 + 3 + 2;
dis(2,2) = 1 + 1 + 2 + 2 + 3 + 3 + 2 + 2;
dis(0,3) = 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5 + 3;
dis(3,3) = 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5 + 3 + 3;
(其余式子也是这个规律)
规律为 两个以2y - 1为通式的等差数列的前n项和再加上y再加X;
即dis = (2 * y) * (2 * y - 1) + y + x;
当y < 0 时:
同理可得:
dis(0,-1) = 1 + 1 + 2 + 2 + 1;
dis(-1,-1) = 1 + 1 + 2 + 2 + 1 - (-1);
dis(0,-2) = 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 2;
dis(-2,-2) = 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 2 - (-2);
dis(0,-3) = 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5 + 6 + 6 + 3;
dis(-3,-3) = 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5 + 6 + 6 + 3 - (-3) ;
首先对y取绝对值,dis为两个以2|y|为通式的等差数列前n项和再加上|y|减去x;
即:dis = (2 * y) * (2 * y + 1) + y - x;
import java.util.Scanner;
public class LuoXuan {
public static int dis(int x, int y) {
int sum = 0;
if (y > 0) {
sum = (2 * y) * (2 * y - 1) + x + y;
} else {
y = Math.abs(y);
sum = (2 * y) * (2 * y + 1) + y - x;
}
return sum;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int x = sc.nextInt();
int y = sc.nextInt();
System.out.println(dis(x, y));
sc.close();
}
}