集合,映射,函数,运算,代数系统,半群,群、环、域

本文介绍了数学的基础概念,包括集合的定义,它是由一些基本单位元素组成的整体;映射的概念,即一个法则使得一个集合的元素与另一个集合的元素一一对应;函数作为特殊映射满足的条件;运算的一元和二元形式,并指出运算与函数的关系;以及代数系统、半群和群的定义,特别强调了群的结合性、单位元和逆元等特性。通过这些基础知识,文章引导读者深入理解数学的代数结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是集合

由不加定义的基本单位元素构成的结构称为集合。除了元素不能够被定义之外,集合也不太能够被定义。如

现代的集合一般被定义为:由一个或多个确定的元素所构成的 **整体**。

又或者说集合是一堆确定的东西。可是整体、一堆又是新的名词。集合不好去定义是因为它的概念太过直白了。

对于集合,它的数学符号是“{}”,集合的不同完全由它的元素不同来体现,我们有两种方法对集合中的元素进行描述:

第一种是穷举法:如{1,2,3}表示一个集合,里面有数字1,2,3这3个元素。
第二种是描述法:如{x | x是一个汉字},“x”表示集合里的每一个元素都有一个共同的名字“x”,“ | ”符号后面是对这个“x”的描述。所以我们的每一个汉字都属于这个集合。

什么是映射

对于两个集合X和Y,里面的元素分别称为x和y。如果存在一个法则 f,使得对X中每个元素x,按法则 f,在Y中有唯一确定的元素y与之对应,那么称 f 为从X到Y的映射,记作f:X->Y
可以看出,映射满足两个条件:
1.对于X的每个x,都有Y里的y与之对应,我称之为存在性
2.对于X的每个x,都只用一个Y里的y与之对应,我称之为确定性

按其他限制条件不同,映射可分为3类:单射、双射、满射
这里谈一下映射的哲学性的问题。

什么是函数

满足映射的两个基本条件就可以称之为函数了。函数是最普通的映射

什么是运算

定义:
设S为集合,函数 f :S->S称为S上的一元运算,简称为一元运算
设S为集合,函数 f :S×S->S称为S上的二元运算,简称为二元运算

可见,运算是一种特殊的函数,他的定义域和值域相同。

什么是代数系统

定义:
非空集合S和S上k个一元或二元运算 f1 , f2 , … , fk 组成的系统称为一个代数系统,简称代数,记作V=<S,f1,f2,...,fk>

什么是半群

设V=<S,*>s是代数系统,“ * ”为二元运算,如果运算是可结合的,则称V为半群

什么是群

在数学中,群表示一个拥有满足封闭性、满足结合律、有单位元、有逆元的二元运算的代数结构,包括阿贝尔群、同态和共轭类。

知识链接

伽罗瓦理论之美
虚数的意义——阮一峰
五次方程(三)群论入门 隐藏在根与系数关系中的秘密——妈咪叔
关于群论和魔群的简单介绍——3Blue1Brown

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值