切片操作

首先,切片是用于从某个对象中抽取部分值。

然后,切片的方向有两种,分为正索引和负索引。

接下来进行切片的操作。

1.从某位置开始截取到结束

2.从某位置开始到某位置结束

3.从某位置到某位置以特定的条件(步长)进行截取

4.负索引

错误示范

11到17为右向而-1为左向所以抵消为空

正确示范

将字符串反转

 

 

### 代码概述 你询问的是“张量的切片操作”,结合之前的代码背景,这是关于 **NumPy 中多维数组(张量)切片机制** 的问题。 --- ### 代码解析 张量在 NumPy 中就是多维数组,切片操作用于提取数组中的一部分数据。我们以一个二维数组为例: ```python array_077 = np.array([[1, 2, 3], [4, 5, 6]]) ``` 这个数组的形状是 `(2, 3)`,表示 2 行 3 列。 #### 示例切片: ```python array_077[1:2] ``` - `1:2` 是切片语法,表示从索引 1 开始,到索引 2 之前结束(不包括索引 2)。 - 所以只选中了索引为 1 的那一行,即 `[4, 5, 6]`。 - 但 NumPy 的切片操作**不降维**,结果仍然是一个二维数组:`[[4, 5, 6]]`。 - 因此它的形状是 `(1, 3)`。 --- #### 更多切片示例: ```python array_077[0:1] # 获取第一行 [[1, 2, 3]] array_077[0] # 获取第一行,结果是一维数组 [1, 2, 3] array_077[:, 1] # 获取所有行的第2列,结果是 [2, 5] array_077[1, :] # 获取第二行,结果是 [4, 5, 6] ``` > 注意:使用切片 `:` 时,会保留维度;使用索引 `1` 时,会降维。 --- ### 知识点 1. **NumPy切片保留维度** - 切片操作 `start:stop` 返回的是原数组的视图,并保留维度。 - 例如 `[1:2]` 返回的是二维数组中的一行,仍然是二维结构。 2. **索引 vs 切片** - 索引(如 `[1]`)会降维,返回的是一个更低维的数组。 - 切片(如 `[1:2]`)不会降维,保留原始维度结构。 3. **多维切片语法** - 二维数组可以使用 `array[row_start:row_end, col_start:col_end]` 的形式进行切片。 - 如 `array_077[1:2, 0:2]` 表示取第二行、前两列的数据。 --- 通过掌握张量的切片操作,你可以灵活地提取数组中的任意部分,是进行数据分析、机器学习、图像处理等任务的重要基础技能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值