目录
前言
今天我想来谈谈视图几何的3D空间的三种变换方式,分别是相似变换、仿射变换和影射变换。
与欧式变换相比,欧式变换保持了向量的长度和夹角,相当于我们把一个刚体原封不动的进行了移动或旋转,不改变它自身的样子,其它集中变换则会改变它的外形。
一、相似变换
相似变换比欧式变换多了一个自由度,他允许物体进行均匀缩放,其矩阵表表示为:
注意,旋转部分多了一个缩放银子s,表示我们在对响亮旋转之后,可以在x,y,z三个坐标上进行均匀缩放,由于含有缩放,相似变换不再保持图形的不面积不变。三维相似变换的几何也叫作相似变换群,记作Sim(3);
二、仿射变换
与欧式变换不同的是,仿射变换只要求A是一个可逆矩阵,而不必是正交矩阵,仿射变换也叫正交投影。经过仿射变换后,立方体就不再是方的了,但是各个面仍然是平行四边形。变换矩阵为: