文章目录
前言
x 1 , x 2 ∈ R n , θ ∈ R \mathrm{x}_1,\mathrm{x}_2\in R^n,\quad\theta\in R x1,x2∈Rn,θ∈R
则过点 x 1 , x 2 \mathrm{x}_1,\mathrm{x}_2 x1,x2的直线可表示为 y = θ x 1 + ( 1 − θ ) x 2 = x 2 + θ ( x 1 − x 2 ) \mathrm{y}=\theta \mathrm{x}_1+(1-\theta)\mathrm{x}_2=\mathrm{x}_2+\theta(\mathrm{x}_1-\mathrm{x}_2) y=θx1+(1−θ)x2=x2+θ(x1−x2)1;
点 x 1 , x 2 \mathrm{x}_1,\mathrm{x}_2 x1,x2之间的线段可表示为 y = θ x 1 + ( 1 − θ ) x 2 , θ ∈ [ 0 , 1 ] \mathrm{y}=\theta \mathrm{x}_1+(1-\theta)\mathrm{x}_2,\;\theta\in[0,1] y=θx1+(1−θ)x2,θ∈[0,1]。
仿射集、凸集、凸锥
集 | 组合 | 包 | |
---|---|---|---|
仿射 | ∀ x 1 , . . . , x k ∈ C , θ 1 + . . . + θ k = 1 , 有 θ 1 x 1 + . . . + θ k x k ∈ C \forall x_1,...,x_k\in C,\theta_1+...+\theta_k=1,有\\\theta_1x_1+...+\theta_kx_k\in C ∀x1,...,xk∈C,θ1+...+θk=1,有θ1x1+...+θkxk∈C | θ 1 x 1 + . . . + θ k x k \theta_1x_1+...+\theta_kx_k θ1x1+...+θkxk | { θ 1 x 1 + . . . + θ k x k ∣ x 1 , . . . , x k ∈ C , θ 1 + . . . + θ k = 1 } \{\theta_1x_1+...+\theta_kx_k\vert x_1,...,x_k\in C,\\\theta_1+...+\theta_k=1\} { θ1x1+...+θkxk∣x1,...,xk∈C,θ1+...+θk=1} |
凸 | ∀ x 1 , . . . , x k ∈ C , θ 1 + . . . + θ k = 1 , θ 1 , . . . , θ k ≥ 0 , 有 θ 1 x 1 + . . . + θ k x k ∈ C \forall x_1,...,x_k\in C,\theta_1+...+\theta_k=1,\theta_1,...,\theta_k\ge0,有\\\theta_1x_1+...+\theta_kx_k\in C ∀x1,...,xk∈C,θ1+...+θk=1,θ1,...,θk≥0,有θ1x1+...+θkxk∈C | θ 1 x 1 + . . . + θ k x k \theta_1x_1+...+\theta_kx_k θ1x1+...+θkxk | { θ 1 x 1 + . . . + θ k x k ∣ x 1 , . . . , x k ∈ C , x 1 + . . . + x k = 1 , θ 1 , . . . , θ k ≥ 0 } \{\theta_1x_1+...+\theta_kx_k\vert x_1,...,x_k\in C,\\x_1+...+x_k=1,\theta_1,...,\theta_k\ge0\} { θ1x1+...+θkxk∣x1,...,xk∈C,x1+...+xk=1,θ1,...,θk≥0} |
凸锥 | ∀ x 1 , . . . , x k ∈ C , θ 1 , . . . , θ k ≥ 0 , 有 θ 1 x 1 + . . . + θ k x k ∈ C \forall x_1,...,x_k\in C,\theta_1,...,\theta_k\ge0,有\\\theta_1x_ 1+...+\theta_kx_k\in C ∀x1,...,xk∈C,θ1,...,θk≥0,有θ1x1+...+θkxk∈C |