在GPU上运行程序时报错:RuntimeError: Unable to find a valid cuDNN algorithm to run convolution

当GPU内存不足导致PyTorch训练中断时,可以考虑两种解决方案:一是减少训练时的batch_size,二是升级硬件,例如购买GPU内存更大的电脑。更经济的方法是使用远程服务器,通过Nomachine进行远程访问,尤其适合深度学习任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、对于已经安装好了pytorch,cudn的情况下,一般都是因为自己笔记本的GPU内存不够导致的,解决方法如下:
1)调小batch_size的数值
2)换电脑吧,买GPU内存大的
3)最好还是用服务器跑深度学习的程序,在家的话可以在服务器和自己电脑上安装nomachine,这样就可以远程访问服务器了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值