示例:使用Shell脚本微调大型模型
假设我们有一个数据集,要在ResNet50模型基础上微调以进行分类任务。
1. 准备数据和环境
在准备数据时,通常需要将数据集组织成训练集和验证集,并确保数据路径和格式符合模型的输入要求。
# 创建训练数据和验证数据的目录
mkdir data
mkdir data/train
mkdir data/val
# 将数据集拷贝到相应目录(示例中假设数据集已经准备好)
cp path_to_train_data/* data/train/
cp path_to_val_data/* data/val/
2. 编写Shell脚本
创建一个Shell脚本(例如train.sh
),用于设置训练参数、启动训练过程和保存模型。
#!/bin/bash
# 设置训练参数
epochs=10
batch_size=32
learning_rate=0.001
model_dir="saved_models/resnet50_finetuned"
# 训练命令
python train.py \
--epochs $epochs \
--batch_size $batch_size \
--learning_rate $learning_rate \
--model_dir $model_dir \
--train_data_dir "data/train" \
--val_data_dir "data/val"
3. 编写训练脚本(train.py)
在Shell脚本中调用Python脚本(例如train.py
),用于定义模型、训练循环、评估和保存模型。
import tensorflow as tf
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.layers