使用Shell脚本微调大型模型**

示例:使用Shell脚本微调大型模型

假设我们有一个数据集,要在ResNet50模型基础上微调以进行分类任务。

1. 准备数据和环境

在准备数据时,通常需要将数据集组织成训练集和验证集,并确保数据路径和格式符合模型的输入要求。

# 创建训练数据和验证数据的目录
mkdir data
mkdir data/train
mkdir data/val

# 将数据集拷贝到相应目录(示例中假设数据集已经准备好)
cp path_to_train_data/* data/train/
cp path_to_val_data/* data/val/
2. 编写Shell脚本

创建一个Shell脚本(例如train.sh),用于设置训练参数、启动训练过程和保存模型。

#!/bin/bash

# 设置训练参数
epochs=10
batch_size=32
learning_rate=0.001
model_dir="saved_models/resnet50_finetuned"

# 训练命令
python train.py \
    --epochs $epochs \
    --batch_size $batch_size \
    --learning_rate $learning_rate \
    --model_dir $model_dir \
    --train_data_dir "data/train" \
    --val_data_dir "data/val"
3. 编写训练脚本(train.py)

在Shell脚本中调用Python脚本(例如train.py),用于定义模型、训练循环、评估和保存模型。

import tensorflow as tf
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.layers 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ai玩家hly

年少且带锋芒,擅行侠仗义之事

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值