【李宏毅2022深度学习】笔记一:如果想获得更好的function来达到好的训练效果,你应该尝试从哪几个方面进行改进?

作者最近开始学习深度学习相关知识,写下这篇文章便于以后自己及时查阅,也希望能帮到有需要的人。以下图片内容均来自李宏毅老师的2022机器学习课程,相关链接会放到文章末尾,如有侵权联系作者进行删除。好,我们正式开始~

一上来呢,老师列举了四大可能原因。并反复强调,一定要从训练集(training data)开始检查起

训练集上的问题:一、模型过于简单 二、优化器选择

测试集上的问题: 三、 ①过拟合②无用信息干扰 四、没分出来一部分数据当测试集

 一、模型过于简单(model bias)

最优在橘点位置,但你给这个模型的公式集合都在蓝色范围内,好比你想大海捞针,但是海里没有针。解决办法:重新设计model,可以尝试输入更多的feature,以增大模型的弹性。

二、优化器选择错误

在蓝色范围公式集合里面,优化器无法选择出里面最优的公式(橘色点),好比针掉到大海里,但是采用了错误的方法,导致无法捞出来。

如何区分到底是问题一还是问题二?

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值