作者最近开始学习深度学习相关知识,写下这篇文章便于以后自己及时查阅,也希望能帮到有需要的人。以下图片内容均来自李宏毅老师的2022机器学习课程,相关链接会放到文章末尾,如有侵权联系作者进行删除。好,我们正式开始~
一上来呢,老师列举了四大可能原因。并反复强调,一定要从训练集(training data)开始检查起
训练集上的问题:一、模型过于简单 二、优化器选择
测试集上的问题: 三、 ①过拟合②无用信息干扰 四、没分出来一部分数据当测试集
一、模型过于简单(model bias)
最优在橘点位置,但你给这个模型的公式集合都在蓝色范围内,好比你想大海捞针,但是海里没有针。解决办法:重新设计model,可以尝试输入更多的feature,以增大模型的弹性。
二、优化器选择错误
在蓝色范围公式集合里面,优化器无法选择出里面最优的公式(橘色点),好比针掉到大海里,但是采用了错误的方法,导致无法捞出来。
如何区分到底是问题一还是问题二?