机器学习 jupyter Python sklearn里面的岭回归

岭回归 Lasso回归

一、标准线性回归(简单线性回归)

标准线性回归(简单线性回归)中:
在这里插入图片描述
如果想用这个式子得到回归系数,就要保证
在这里插入图片描述
是一个可逆矩阵。
下面的情景:如果特征的数据比样本点还要多,数据特征n,样本个数m,如果n>m,则计算

在这里插入图片描述
会出错。因为
在这里插入图片描述
不是满秩矩阵(行数小于列数),所有不可逆。
为了解决这个问题,统计学家引入了岭回归的概念。

想了解更多标准线性回归可以转跳到这里:

二、岭回归

1.基本含义:
在这里插入图片描述
λ为岭系数, I为单位矩阵(对角线上全为1,其他元素为0)。单位矩阵为满秩矩阵,乘以λ仍然为满秩矩阵。
2.岭回归的代价函数
在这里插入图片描述
正则化的代价函数:L2正则化(权值的平方):
在这里插入图片描述
了解更多正则化内容点击这里
3.推导过程
根据代价函数求解回归系数w的值为如下的表达式:

在这里插入图片描述

在这里插入图片描述
注:

在这里插入图片描述
其中
在这里插入图片描述
称为L2正则化项
在所有参数平方和前乘以了一个参数λ,把它叫正则化系数或者惩罚系数。这个惩罚系数是调节模型好坏的关键参数,我们通过两个极端的情况说明它是如何调节模型复杂度的。( 较大的λ值指定较强的正则化)
λ值为0:损失函数将与原来损失函数一样(即最小

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值