岭回归 Lasso回归
一、标准线性回归(简单线性回归)
标准线性回归(简单线性回归)中:
如果想用这个式子得到回归系数,就要保证
是一个可逆矩阵。
下面的情景:如果特征的数据比样本点还要多,数据特征n,样本个数m,如果n>m,则计算
会出错。因为
不是满秩矩阵(行数小于列数),所有不可逆。
为了解决这个问题,统计学家引入了岭回归的概念。
二、岭回归
1.基本含义:
λ为岭系数, I为单位矩阵(对角线上全为1,其他元素为0)。单位矩阵为满秩矩阵,乘以λ仍然为满秩矩阵。
2.岭回归的代价函数
正则化的代价函数:L2正则化(权值的平方):
了解更多正则化内容点击这里
3.推导过程
根据代价函数求解回归系数w的值为如下的表达式:
注:
其中
称为L2正则化项
在所有参数平方和前乘以了一个参数λ,把它叫正则化系数或者惩罚系数。这个惩罚系数是调节模型好坏的关键参数,我们通过两个极端的情况说明它是如何调节模型复杂度的。( 较大的λ值指定较强的正则化)
λ值为0:损失函数将与原来损失函数一样(即最小