OpenCV实战之四 | 基于OpenCV实现图像修复

本文介绍了如何使用OpenCV中的INPAINT_NS和INPAINT_TELEA算法进行图像修复,包括创建掩码、修复过程和实际代码示例,展示了修复损坏图像的技术在计算机视觉中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言
图像修复是一种图像处理技术,旨在改善或恢复受损或破坏的图像,使其看起来更清晰、更完整或更可用于特定任务。这些损伤可能包括噪声、模糊、缺失、伪像、亮度不均匀等问题。图像修复技术可以在多个领域中发挥作用,包括计算机视觉、医学图像处理、数字摄影和文档恢复等。

一、图像修复

图像修复是计算机视觉中的一类算法,其目标是填充图像或视频内的区域。该区域使用二进制掩模进行标识,填充通常根据需要填充的区域边界信息来完成。图像修复的最常见应用是恢复旧的扫描照片。它还用于删除图像中的小的不需要的对象。

本文主要介绍OpenCV中实现的两种修复算法。

  1. INPAINT_NS : Navier-Stokes based Inpainting
  2. INPAINT_TELEA : Fast Marching Method based

二、实现代码

在OpenCV中,使用函数inpaint实现了修复算法。函数接口如下:

dst = cv2.inpaint(src, inpaintMask, inpaintRadius, flags)

src:源图像

inpaintMask:二进制掩码,指示要修复的像素。

inpaintRadius:表示修复的半径

flags : 修复算法,主要有INPAINT_NS (Navier-Stokes based method) or INPAINT_TELEA (Fast marching based method)

dst:结果图像

整体代码

import cv2

# 读取带有缺陷的图像
damaged_image = cv2.imread('damaged.jpg')

# 创建一个掩码来指示修复区域
mask = cv2.imread('mask.jpg', 0)

# 使用INPAINT_TELEA(Fast marching based method)修复算法修复图像
repaired_image = cv2.inpaint(damaged_image, mask, 3, cv2.INPAINT_TELEA)

# 使用INPAINT_NS(Navier-Stokes based method)修复算法修复图像
repaired_image2 = cv2.inpaint(damaged_image, mask, 3, cv2.INPAINT_NS)

# 保存修复后的图像
cv2.imwrite('repaired.jpg', repaired_image)
cv2.imwrite('repaired2.jpg', repaired_image2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

w94ghz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值