前言
图像修复是一种图像处理技术,旨在改善或恢复受损或破坏的图像,使其看起来更清晰、更完整或更可用于特定任务。这些损伤可能包括噪声、模糊、缺失、伪像、亮度不均匀等问题。图像修复技术可以在多个领域中发挥作用,包括计算机视觉、医学图像处理、数字摄影和文档恢复等。
一、图像修复
图像修复是计算机视觉中的一类算法,其目标是填充图像或视频内的区域。该区域使用二进制掩模进行标识,填充通常根据需要填充的区域边界信息来完成。图像修复的最常见应用是恢复旧的扫描照片。它还用于删除图像中的小的不需要的对象。
本文主要介绍OpenCV中实现的两种修复算法。
- INPAINT_NS : Navier-Stokes based Inpainting
- INPAINT_TELEA : Fast Marching Method based
二、实现代码
在OpenCV中,使用函数inpaint实现了修复算法。函数接口如下:
dst = cv2.inpaint(src, inpaintMask, inpaintRadius, flags)
src:源图像
inpaintMask:二进制掩码,指示要修复的像素。
inpaintRadius:表示修复的半径
flags : 修复算法,主要有INPAINT_NS (Navier-Stokes based method) or INPAINT_TELEA (Fast marching based method)
dst:结果图像
整体代码:
import cv2
# 读取带有缺陷的图像
damaged_image = cv2.imread('damaged.jpg')
# 创建一个掩码来指示修复区域
mask = cv2.imread('mask.jpg', 0)
# 使用INPAINT_TELEA(Fast marching based method)修复算法修复图像
repaired_image = cv2.inpaint(damaged_image, mask, 3, cv2.INPAINT_TELEA)
# 使用INPAINT_NS(Navier-Stokes based method)修复算法修复图像
repaired_image2 = cv2.inpaint(damaged_image, mask, 3, cv2.INPAINT_NS)
# 保存修复后的图像
cv2.imwrite('repaired.jpg', repaired_image)
cv2.imwrite('repaired2.jpg', repaired_image2)