B. Two chandeliers
题意
给定一个长度为n的数组a和m的数组b,两个数组分别循环展示,求第k个不相同的数。
n <= 5e5
k <= 10e12
ai ,bi<= 2 * max(n,m)
a中ai 互不相同,b中bi互不相同
思路
再一次大循环中(len = n * m / gcd(n,m)) 当ai = x(固定值) 和bj 相同的情况最多只会出现一次(ai和bj在a中和b中只出现一次),这一次满足
ai = b j , pos = i %n , pos = j % m
化简为 n*x + i = m*y + j
n*x - m*y = i - j
可以算出这一次的值 在 %len的情况下(根据扩展欧几里得算法)
知道每一个数对应大循环下的第几个数是相等的,也就确定长度为m的循环之下,不相等数的个数 m -= m / len + (m %len >= 这个数对应大循环下的数)
所以我们就可以二分 m 求满足大于等于k的值最小
代码
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<unordered_set>
#include<unordered_map>
using namespace std;
#define x first
#define y second
#define int long long
typedef pair<int ,int > PII;
typedef long long ll;
const int N = 5e5 + 10;
int a[N],b[N],f[N * 2];
int pos[N * 2];
int len;
int n,m,k;
int ex_gcd(int a,int b,int &x,int &y){
if(!b){
x = 1,y = 0;
return a;
}
int d = ex_gcd(b,a % b,y,x);
y -= a / b * x;
return d;
}
bool check(int u){
int ans = u;
for(int i = 1;i <= n;i++){
if(pos[a[i]]){
int x = u / len + (u % len >= pos[a[i]]);
ans -= x;
}
}
return ans >= k;
}
signed main(){
scanf("%lld%lld%lld",&n,&m,&k);
for(int i = 1;i <= n;i++) scanf("%lld",&a[i]);
for(int i = 1;i <= m;i++) scanf("%lld",&b[i]),f[b[i]] = i;
int x,y;
int d = ex_gcd(n,m,x,y);
len = n * m / d;
for(int i = 1;i <= n;i++){
if(f[a[i]]){
int u = f[a[i]] - i;
int d = ex_gcd(n,-m,x,y);
if(u % d) continue;
int v = u / d;
x = x * v;
// cout << x <<endl;
int t = abs(-m / d);
// cout << t <<endl;
x = (x % t + t) % t;
// cout << x << endl;
pos[a[i]] = i + n * x;
// cout << a[i] << ' '<<pos[a[i]] <<endl;
}
}
int l = 0,r = 1e18;
while(l < r){
int mid = (l + r) >>1;
if(check(mid)) r = mid;
else l = mid + 1;
}
cout << l << endl;
return 0;
}