Codeforces Round #707 (Div. 1, based on Moscow Open Olympiad in Informatics)

本文介绍了一种算法,用于解决两个循环数组中找到第k个不同的数值问题。通过扩展欧几里得算法确定相等数值的位置,并使用二分查找确定目标值。适用于大数据集处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B. Two chandeliers

题意

给定一个长度为n的数组a和m的数组b,两个数组分别循环展示,求第k个不相同的数。

n <= 5e5
k <= 10e12
ai ,bi<= 2 * max(n,m) 
a中ai 互不相同,b中bi互不相同

思路

再一次大循环中(len = n * m / gcd(n,m)) 当ai = x(固定值) 和bj 相同的情况最多只会出现一次(ai和bj在a中和b中只出现一次),这一次满足
ai = b j , pos = i %n , pos = j % m
化简为 n*x + i = m*y + j
n*x - m*y = i - j
可以算出这一次的值 在 %len的情况下(根据扩展欧几里得算法)
知道每一个数对应大循环下的第几个数是相等的,也就确定长度为m的循环之下,不相等数的个数 m -= m / len + (m %len >= 这个数对应大循环下的数) 所以我们就可以二分 m 求满足大于等于k的值最小

代码

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<unordered_set>
#include<unordered_map>

using namespace std;
#define x first
#define y second
#define int long long
typedef pair<int ,int > PII;
typedef long long ll;
const int N = 5e5 + 10;
int a[N],b[N],f[N * 2];
int pos[N * 2];
int len;
int n,m,k;
int ex_gcd(int a,int b,int &x,int &y){
	if(!b){
		x = 1,y = 0;
		return a; 
	}
	int d = ex_gcd(b,a % b,y,x);
	y -= a / b * x;
	return d;
}
bool check(int u){
	int ans = u;
	for(int i = 1;i <= n;i++){
		if(pos[a[i]]){
			int x = u / len + (u % len >= pos[a[i]]);
			ans -= x;
		}
	}
	return ans >= k;
}
signed main(){
	scanf("%lld%lld%lld",&n,&m,&k);
	for(int i = 1;i <= n;i++) scanf("%lld",&a[i]);
	for(int i = 1;i <= m;i++) scanf("%lld",&b[i]),f[b[i]] = i;
	int x,y;
	int d = ex_gcd(n,m,x,y);
	len = n * m / d;
	for(int i = 1;i <= n;i++){
		if(f[a[i]]){
			int u = f[a[i]] - i;
			int d = ex_gcd(n,-m,x,y);
			if(u % d) continue;
			int v = u / d;
			x = x *  v;
//			cout << x <<endl;
			int t = abs(-m / d);
//			cout << t <<endl;
			x = (x % t +  t) % t;
//			cout << x << endl;
			pos[a[i]]  = i + n * x;
//			cout << a[i] << ' '<<pos[a[i]] <<endl; 
		}
	}
	int l = 0,r = 1e18;
	while(l < r){
		int mid = (l + r) >>1;
		if(check(mid)) r = mid;
		else l = mid + 1;
	}
	cout << l << endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值