第三章 线性模型
-
线性回归
旨在学得一个线性模型以尽可能来预测出其对应的 连续值 ,通过对预测值和真实值之间,尽可能缩小其欧氏距离。
-
一元线性回归
- 正交回归:点到直线的垂直距离最短
- 线性回归:均方误差最小直线 平行于y轴到直线最短的距离
- 最小二乘法
- 极大似然估计
-
多元线性回归
从一般的线性回归模型,到映射在n维空间上的多元线性回归,可以通过矩阵的形式表示出来
-
对数几率回归
- 又叫做逻辑回归,比如说将二分类的问题的结果转化为0-1上的值的输出,用来处理分类问题的算法。
-
线性判别分析(LDA)
通过给定训练样例集,设法将样例投影到一条直线上,使得同类样例的投影点尽可能接近,异类样例的投影点尽可能远离
-
多分类学习
- 一对一
- 一对多
- 多对多
-
类别不平衡问题
- 对训练集中的反类样例进行“欠采样”,即去除一些反例使得正、负样例数目接近,然后进行学习。(删除后接近)
- 对训练集中的正类样例进行“过采样”,即增加一些正例使得正、反例数目接近,然后进行学习。(增加后接近)
- 直接基于原始训练集进行学习,但在训练好的分类器进行预测时,将“再缩放”策略嵌入到其决策过程中,称为“阈值移动”。
- 是否可以多次随机采取数目解决的类别数据进行学习