第三章 线性模型

第三章 线性模型

  • 线性回归

    旨在学得一个线性模型以尽可能来预测出其对应的 连续值 ,通过对预测值真实值之间,尽可能缩小其欧氏距离。

  • 一元线性回归

    image.pngimage.png

    • 正交回归:点到直线的垂直距离最短
    • 线性回归:均方误差最小直线 平行于y轴到直线最短的距离
    • 最小二乘法
    • 极大似然估计
  • 多元线性回归

    image.png

    从一般的线性回归模型,到映射在n维空间上的多元线性回归,可以通过矩阵的形式表示出来

  • 对数几率回归

    • 又叫做逻辑回归,比如说将二分类的问题的结果转化为0-1上的值的输出,用来处理分类问题的算法。
  • 线性判别分析(LDA)

    通过给定训练样例集,设法将样例投影到一条直线上,使得同类样例的投影点尽可能接近,异类样例的投影点尽可能远离

  • 多分类学习

    • 一对一
    • 一对多
    • 多对多
  • 类别不平衡问题

    • 对训练集中的反类样例进行“欠采样”,即去除一些反例使得正、负样例数目接近,然后进行学习。(删除后接近)
    • 对训练集中的正类样例进行“过采样”,即增加一些正例使得正、反例数目接近,然后进行学习。(增加后接近)
    • 直接基于原始训练集进行学习,但在训练好的分类器进行预测时,将“再缩放”策略嵌入到其决策过程中,称为“阈值移动”。
    • 是否可以多次随机采取数目解决的类别数据进行学习
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

霖承科技 LinChance

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值