
tensorflow
文章平均质量分 94
乱搭巴士
debug
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
python训练数据集报错gbk codec cant decode byte 0xaf in position 99
错误原因: xml文件中的path路径里有中文 解决方案: 去掉中文并且写为图片所在的路径原创 2020-06-13 08:50:28 · 560 阅读 · 0 评论 -
记录:使用InceptionV3模型进行迁移学习,并训练自己的数据集
训练: 首先把自己的图片放在文件夹目录下,文件夹名字很重要,这就是到时候生成的label名字。 使用到了tensorflow的retrain文件,这里直接贴出来: # Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compl原创 2020-06-10 16:41:59 · 1662 阅读 · 0 评论 -
tensorflow使用模型测试:google.protobuf.message.DecodeError: Error parsing message
选择训练模型的时候选择错了 错误: 正确:原创 2020-06-05 21:55:31 · 7114 阅读 · 4 评论 -
记录:使用Tensorflow Object Detection API识别自己的数据集
上篇文章有说到怎么配置及运行例程: https://blog.csdn.net/qq_45128278/article/details/106469761 一些准备: 安装labelImg软件。 见链接:原创 2020-06-03 17:43:47 · 709 阅读 · 0 评论 -
windows10下安装LabelImg及基本操作
下载地址: 去github上找一下或者下csdn的,我是朋友发的。 安装过程: 1.先下载好得到文件。 2.pip导入一些需要的包: PyQt5、PyQt5_tools、lxml。 3.文件里有一个resources.qrc文件,要把它转化成py文件。 cmd内进入此文件目录: Pyrcc5 -o resources.py resources.qrc 把生成的resource.py文件移动到同级的libs目录下。 4.在cmd里运行python labelImg.py即可。 出错之一:ModuleNotFo原创 2020-06-01 13:03:45 · 844 阅读 · 2 评论 -
记录:tensorflow1.15安装,object_detection安装以及运行例程
使用到的环境: tensorflow1.15 cpu版本 protoc 3.4.0版本 python3.7 基本流程: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md 这个网址下面有一些要安装的模块,根据它安装就行了。 要强调一下的有: pycocotools的安装: 1.pip install pycocotools 很容易失败,反正我失败了好几次。 2.pip原创 2020-06-01 12:21:14 · 2011 阅读 · 0 评论 -
tensorflow1.x的model库下载及安装
官网地址: https://github.com/tensorflow/models 我直接按绿色的download,但是下下来的文件是损坏的,只有三十几M,正常应该是1GB左右。附上一个博主的百度云资源,我是从这里下载的。 https://pan.baidu.com/s/1vs7fbN8j03ErV9s9AbMkag 密码:97os。 原博主文章链接: https://blog.csdn.net/hh_2018/article/details/79779794 下载之后,按照上一篇文章使用cmd找到ten原创 2020-05-29 20:09:09 · 2067 阅读 · 5 评论