自动驾驶定位融合

复合测量

源自外感受传感器的传感器数据通常由传感器相关参考系中的坐标提供。对于协同融合,将所有数据引用到一个全局参考系是合理的。将所有传感器的数据引用到一个共同的车辆参考系可以被视为一种常见的用途。通过利用传感器读数的时间戳来确定该特定时间点的车辆位置,即使在所涉及的传感器的采样点/速率不同的情况下,也可以精确地引用它。车辆参考系的当前位置又可以通过车辆的位置习和航向φ方位角i来表示,例如由GNSS接收机提供,而相应的参考系如WGS8419,可以接管全局参考系的作用。

图 1显示了三个相关参考框架的示例性可视化,即感官 1车辆 2全局参考框架 3。传感器数据可以通过将相对参考系位置的序列混合到全局参考系中。然而,每一种关系的测量,例如捕获物体相对于传感器参考系的位置、传感器相对于车辆参考系的位置,或车辆相对于全局参考系的位置,都受到明显的不确定性的影响。因此,应适当考虑变换链上相应的不确定性,以便为传感器数据的绝对表示分配总不确定性。本文采用了Smith提出的随机复合方法。基本复利操作定义如下

在这个例子中,通过TSRcamera观察交通标志l0。像往常一样,它位于传感器自身的参考框架 1 内。为了将多个传感器的传感器读数组合在一起,所有单独的传感器参考框架都被转换为一个公共车辆框架 2 。通过对车辆i的绝对位置习和航向φ方位角i进行普通车辆参考系的变换,可以采用全局、交叉车辆方式3来参考获取的CVD,例如通过WGS84参考系。需要考虑所用传感器的不同采样点/速率。例如,这可以通过插值来实现。插值的车辆位置表示。

输入:对象 i、j、k 的序列,其中对象 j 相对于对象 i 的关系和对象 k 相对于对象

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值