C++ spfa判断负环

给定一个 n
个点 m
条边的有向图,图中可能存在重边和自环, 边权可能为负数。

请你判断图中是否存在负权回路。

输入格式
第一行包含整数 n
和 m

接下来 m
行每行包含三个整数 x,y,z
,表示存在一条从点 x
到点 y
的有向边,边长为 z

输出格式
如果图中存在负权回路,则输出 Yes,否则输出 No。

数据范围
1≤n≤2000
,
1≤m≤10000
,
图中涉及边长绝对值均不超过 10000

输入样例:
3 3
1 2 -1
2 3 4
3 1 -4
输出样例:
Yes

在这里插入图片描述

#include <iostream>
#include <cstring>
#include <queue>
#include <algorithm>

using namespace std;
const int N = 100010;
int n, m;
int h[N], w[N], e[N], ne[N], idx;
int dist[N];
bool st[N];
int cnt[N]; // 只需要再维护一个数组,记录这个点最短路的边数即可。

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}

bool spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    
    queue<int> q;
    for(int i = 1; i <= n; i ++ ) // 并不是求从1号点开始有没有负环,故把所有点先加进去
    {
        q.push(i);
        st[i] = true;
    }
    
    while(q.size())
    {
        int t = q.front();
        q.pop();
        st[t] = false;
        
        for(int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if(dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;
                if(cnt[j] >= n) // 最短路n条边则有n+1点,一定有重点
                    return true;
                if(!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }
    return false;
}

int main ()
{
    cin >> n >> m;
    memset(h, -1, sizeof h);
    
    for(int i = 0; i < m; i ++ )
    {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c);
    }
    
    bool t = spfa();
    
    
    if(t) printf("Yes");
    else printf("No");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值