安装pytorch3d 好用

1、 pip list, 检查自己是否已经存在一个不能用的pytorch3d, pip uninstall pytorch3d
2、https://github.com/facebookresearch/pytorch3d/blob/main/INSTALL.md
访问官方教程,跟着做,不要相信小道链接

3、python版本可以改变

1、创建conda python3.9的虚拟环境

conda create -n pytorch3d python=3.9
conda activate pytorch3d
conda install pytorch=1.13.0 torchvision pytorch-cuda=11.6 -c pytorch -c nvidia
conda install -c iopath iopath
 
curl -LO https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz
tar xzf 1.10.0.tar.gz
export CUB_HOME=$PWD/cub-1.10.0

2、若基于cuda,需通过下面这个命令安装所需要的库

conda install -c conda-forge -c fvcore fvcore
conda install -c bottler nvidiacub

3、安装pytorch3d

conda install pytorch3d -c pytorch3d

同时参考这里点击这里

4、写在最后
一直安装失败怎么办?–>去github下载pytorch3d,放到Anaconda3\envs\msx\Lib\site-packages\pytorch3d,其中msx是我的conda虚拟环境名字
下载地址:https://github.com/facebookresearch/pytorch3d/tree/main/pytorch3d
在这里插入图片描述
注意是有_init_.py文件的,如上图所示是可以引入成功的,该方法同时适用于Ubuntu服务器
在这里插入图片描述

官方示例:

from pytorch3d.utils import ico_sphere
from pytorch3d.io import load_obj
from pytorch3d.structures import Meshes
from pytorch3d.ops import sample_points_from_meshes
from pytorch3d.loss import chamfer_distance

# Use an ico_sphere mesh and load a mesh from an .obj e.g. model.obj
sphere_mesh = ico_sphere(level=3)
verts, faces, _ = load_obj("model.obj")
test_mesh = Meshes(verts=[verts], faces=[faces.verts_idx])

# Differentiably sample 5k points from the surface of each mesh and then compute the loss.
sample_sphere = sample_points_from_meshes(sphere_mesh, 5000)
sample_test = sample_points_from_meshes(test_mesh, 5000)
loss_chamfer, _ = chamfer_distance(sample_sphere, sample_test)
<think>好的,我现在需要帮助用户解决如何安装PyTorch3D库的问题。首先,我得回忆一下PyTorch3D安装流程,以及用户可能遇到的问题。用户可能已经通过Anaconda管理环境,所以应该从conda安装开始。但PyTorch3D安装可能不像常规库那样直接,需要先添加特定的渠道,比如facebookresearch频道。 接下来,我需要检查用户提供的引用内容是否有帮助。引用[1]提到通过Anaconda安装torchaudio的步骤,特别是涉及ffmpeg的部分,这可能与依赖项有关。但PyTorch3D可能需要不同的依赖,比如CUB库,或者特定版本的CUDA工具包。引用[3]提到处理DLL文件的问题,如果用户在安装后遇到类似错误,可能需要安装对应的CUDA版本或重新下载相关文件。 然后,我需要分步骤指导用户。首先确保PyTorch已经正确安装,并且版本与PyTorch3D兼容。用户可能需要先创建虚拟环境,安装正确版本的PyTorch,然后再安装PyTorch3D。如果使用conda安装失败,可能需要从源代码编译,这需要安装必要的构建工具,如CMake、ninja等。 用户可能会在安装过程中遇到依赖项缺失的问题,比如提示缺少CUB,这时候需要指导用户设置环境变量CUB_HOME。另外,编译时可能需要Visual Studio的构建工具(在Windows上),或者正确配置编译器。 最后,测试安装是否成功,可以通过导入PyTorch3D并运行简单代码来验证。如果出现错误,可能需要检查CUDA版本、PyTorch版本是否匹配,或者重新安装依赖项。 总结步骤:创建环境→安装PyTorch→添加conda频道→安装PyTorch3D→处理依赖→测试安装。同时提醒用户注意版本兼容性和可能的常见问题,如DLL缺失或编译错误,并提供解决方法。</think>### 如何逐步安装PyTorch3D库 #### 步骤1:创建并激活虚拟环境(推荐) ```bash conda create -n pytorch3d_env python=3.9 conda activate pytorch3d_env ``` #### 步骤2:安装PyTorch基础环境 根据CUDA版本选择对应命令(以CUDA 11.3为例): ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` #### 步骤3:添加PyTorch3D的conda频道 ```bash conda config --add channels pytorch3d ``` #### 步骤4:安装PyTorch3D ```bash conda install pytorch3d -c pytorch3d ``` 若conda安装失败,可尝试从源码编译: ```bash git clone https://github.com/facebookresearch/pytorch3d.git cd pytorch3d pip install -e . ``` #### 步骤5:验证安装 ```python import torch from pytorch3d.utils import ico_sphere print(ico_sphere(level=3)) ``` ### 常见问题解决 1. **CUB依赖错误** 设置环境变量: ```bash export CUB_HOME=/path/to/cub-1.10.0 ``` 2. **CUDA版本不匹配** 需确保`cudatoolkit`版本与系统CUDA驱动兼容[^3] 3. **编译失败** 安装必要构建工具: ```bash conda install cmake ninja ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值