利用Pyecharts绘制漏斗图的案例【含参数详解】

本文介绍了如何利用Pyecharts库绘制漏斗图,通过数据准备、图形绘制和参数解释,展示了如何分析业务流程中的关键环节。在图形绘制部分,分析了单环节转换率,提出可能的问题及优化策略。同时,详细解释了如bg_color、label_opts、sort_、gap和tooltip_opts等参数的用法,帮助读者理解并自定义漏斗图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、概念介绍

漏斗图(Funnel),也称为倒三角图,借助echarts的解释如下:

    Funnel diagram is suitable for one-way analysis of single process with standardized business process, long cycle 
and multiple links.Through comparison of business data of each link in the funnel,the link where the potential problems
can be found intuitively,and then decisions can be made.

在现实应用中,我们常利用此类图形帮助进行业务流程比较规范、周期长、环节多的单流程可视化分析。

场景列举:
用户生命周期模型  —— AARRR(本案例),用于分析用户增长、协助用户运营
电商漏斗模型  —— 如AIPL(Awareness → Interest → Purchase → Loyalty)
用户消费行为模型  —— AIDMA(Attention → Interest → Desire → Memory → Action)
		            AISAS(Attention → Interest → Search → Action → Share)
		            ISMAS(Interest → Search → Mouth/口碑 → Action → Share)
			        SICAS(Sense → interest&interactive → Connect&Communicate → Action → Share)
......

在这样一条从属关系链下,漏斗图反映出来的各环节业务数据缩减比率可以直观说明问题所在的环节,帮助分析者或者管理者做出决策。

二、数据准备

由于是模拟数据作图,这里就按照AARRR模型五个环节随机生成数字如下:

环节 人数 单一环节转化率 总体转化率
Acquisition 156280 100.00% 100.00%
Activation 93346 59.73% 59.73%
Retention 47047 50.40% 30.10%
Revenue 10463 22.24% 6.70%
Referral 7899 75.49% 5.05%

三、图形绘制

import pandas as pd
data = pd.read_excel('漏斗图.xlsx', 'Sheet1')
attrs = data['环节'].t
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林老头ss

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值