概率论 一维随机变量

本文详细介绍了概率论中的一维随机变量,包括离散型和连续型随机变量的概念。离散型随机变量包括两点分布、二项分布和泊松分布等;连续型随机变量涉及均匀分布、指数分布和正态分布,特别是正态分布的特性如对称性和3σ原则。同时,文章还阐述了分布函数、概率密度函数和分布律等核心概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随机变量

离散型随机变量:有限个或无限可列个
连续型随机变量

分布函数F(X)

范围是[a,b)
包含能取到a以及a之前的值的概率相加

分布律(概率分布)

1.所有概率相加为1
2.W=X-1,计算出每一个对应的W,然后如果有相同的W就合并其概率,最后一一对应P(x)即可

概率密度函数(密度)

1.记住负无穷到0
某个数到正无穷
2.[a,b]=(a,b)=(a,b]=[a,b)
f(x),P{x},F(x)使用时不用区分开闭区间
3.F(x)’=f(x)
在这里插入图片描述
积分f(x)dx=F(x)

常见的离散型随机变量

1.两点分布或0-1分布
只有两个可能的结果:A发生或不发生
2.n重伯努利事件(二项分布) X~B/b(n,p)

只有两个可能的结果:A发生或不发生,将这个试验独立地进行n次
p=Cnkp^k
*(1-p)^n-k
一般将这个试验发生的次数记为X

3.泊松分布 X~P(入)
当二项分布比较大的时候,入=np
可以Cnkp^k
*(1-p)^n-k=
在这里插入图片描述
在这里插入图片描述<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DQ_CODING

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值