- 博客(563)
- 收藏
- 关注
原创 病理学基础模型综述:进展与未来方向
这篇综述系统梳理了病理基础模型(PFMs)的研究进展,为医学AI研究者提供了全面的分析框架。文章提出了一个层次化的分类体系,,其中模型范围涵盖提取器中心、聚合器中心和混合中心三类,预训练方式包括视觉单模态和跨模态方法,模型设计则关注架构、参数数量和规模等特征。通过这一分类体系,研究者能够清晰对比不同PFMs的技术特点,如CTransPath侧重提取器设计,HIPT同时优化提取器和聚合器,而CHIEF则专注于聚合器的改进。
2025-08-12 10:50:24
69
原创 Nature子刊综述|人工智能增强型超声心动图在心血管疾病管理中的应用
这篇发表于《Nature Reviews Cardiology》的综述文章系统探讨了人工智能在超声心动图领域的应用现状与未来方向,对医学AI研究者具有重要参考价值。文章详细分析了AI在超声心动图工作流各环节的整合,包括图像采集、分析与解读,重点阐述了自动化测量、疾病模式识别及新表型发现等核心应用,同时通过对比多步骤模型与端到端模型的技术路径,揭示了不同AI架构在超声心动图分析中的优势与局限,如多步骤模型的可解释性与端到端模型对大规模数据的依赖。
2025-08-12 10:49:52
443
原创 医学CLIP-SAMv2:迈向通用的文本驱动医学图像分割
这篇文章提出了MedCLIP-SAMv2框架,旨在实现通用的文本驱动医学图像分割。该框架整合了CLIP和SAM模型,通过文本提示在零样本和弱监督场景下对临床影像进行分割。其核心改进包括使用新的解耦硬负样本噪声对比估计(DHN-NCE)损失函数微调BiomedCLIP模型,利用多模态信息瓶颈(M2IB)生成视觉提示以在零样本设置中通过SAM生成分割掩码,并探索在弱监督范式中使用零样本分割标签进一步提升分割质量。
2025-08-11 15:33:13
510
原创 CVPR+医学AI|类间像、类内变?新框架让病理图像分割更靠谱
该框架通过聚类从训练集中构建图像库,为每个类别提取多个原型特征以捕捉类内异质性,并利用对比学习设计输入特征与类特定原型之间的匹配损失,有效缓解类间同质性,引导模型生成更准确的类激活图(CAMs)。与依赖文本提示的方法不同,PBIP利用图像级标签及其对应图像构建视觉原型,能够识别文本难以描述的细微视觉差异。在LUAD-HistoSeg、BCSS-WSSS、GCSS和BCSS四个数据集上的实验表明,其性能优于现有弱监督分割方法,为病理图像分割设立了新基准。ClassNet基于SegFormer骨干网络提取多尺度
2025-08-10 19:21:46
312
原创 Nature子刊公开最新多模态医学AI数据集,助力头颈癌精准肿瘤学的发展
这篇发表于《Nature Communications》的文章介绍了一个名为HANCOCK的多模态头颈部癌症数据集,该数据集包含763名患者的单中心真实世界数据,涵盖人口统计学、病理学、血液数据、手术报告及组织学图像等多种模态。其中组织学图像包括701例原发性肿瘤的HE染色全切片图像(WSIs)、396例淋巴结切片以及最多32个包含多种免疫组化标记的组织芯片(TMAs),且所有数据可通过www.hancock.research.fau.eu公开获取,为医学AI研究提供了丰富且全面的基础资源。
2025-08-08 15:50:52
1104
原创 Nature子刊|基于超声成像的可解释多模态深度学习预测甲状腺癌侧方淋巴结转移
这篇发表于《Nature Communications》的研究针对甲状腺癌侧方淋巴结转移(LLNM)术前预测的临床需求,提出了一种名为LLNM-Net的双向注意力深度学习模型。该模型融合了术前超声图像、放射报告、病理结果及人口统计学数据等多模态信息,训练数据涵盖7个中心的29,615名患者和9836例手术案例。
2025-08-05 11:20:35
1087
原创 Sci Adv|使用少量标注病理切片微调基础模型,即可区分肿瘤细胞的分化状态,并推断进展轨迹
这篇发表于《Science Advances》的研究提出了一种基于人工智能的计算框架,能够利用常规采集的苏木精-伊红(H&E)染色全切片图像(WSIs),对肿瘤细胞的分化状态进行分类、推断细胞动态轨迹并量化肿瘤进展。研究团队通过(涵盖G1-G4肿瘤分级及正常、坏死等其他病理状态),在肺腺癌(ADC)数据集上实现了较高的分类精度,其中切片水平的加权准确率达0.70,区分低级别与中/高级别肿瘤的AUROC为0.89。
2025-07-31 17:22:45
1019
原创 肺癌免疫治疗选单药还是化疗?AI 模型 A-STEP 帮医生精准决策
研究不仅展示了机器学习在解析肿瘤-免疫复杂关系中的潜力,更为基于多中心真实世界数据构建可转化的临床决策工具提供了方法论范例,为后续结合更深层组学数据(如全外显子测序、转录组学)的研究奠定了基础。模拟实验显示,遵循A-STEP推荐治疗的患者在ICI-Mono组和ICI-Chemo组的2年无进展生存期HR值分别为0.60和0.58,验证了模型在个体化治疗决策中的临床价值。,重点捕捉肿瘤-免疫轴的复杂非线性关系,解决了传统单一生物标志物(如PD-L1)在免疫检查点抑制剂(ICIs)疗效预测中的局限性。
2025-07-30 09:04:54
439
原创 人工智能在兽医学中的应用
团队新增了一个【动物医学AI组】,下周二晚上7点(暂定)会由团队的李教授(吉林大学)和我们分享她关于动医AI的研究与探索;因此今天准备了此推送,方便大家了解一些背景知识,欢迎对这一方面的同学和老师加入我们!这篇发表于2025年的文章系统梳理了人工智能在兽医学领域的应用现状与发展潜力,为医学AI研究者提供了跨物种医疗技术转化的重要参考。
2025-07-28 18:27:08
905
原创 从普通的病理图像到可解释的临床报告,这个多模态切片级基础模型PRISM进一步完善了病理AI的应用场景
同时每张WSI经Virchow模型生成切片嵌入,再由Perceiver网络聚合为切片级表示。语言模块基于BioGPT构建,通过拆分单模态与多模态解码器层,并引入跨注意力机制实现视觉-语言对齐,预训练过程中同时优化切片嵌入与报告嵌入的对比损失及报告生成的自回归损失。这种设计不仅解决了WSI的高维度压缩难题,还通过临床报告的丰富语义监督,使模型在零样本场景下即可实现接近有监督模型的性能,线性探测和微调进一步提升了下游任务精度。实验结果验证了PRISM在临床相关任务中的显著优势。
2025-07-16 17:24:49
895
原创 医学AI前沿论坛第6期|目前主流的医学AI基础模型有哪些?我们应该如何在有限的数据下构建高性能的基础模型?
此外,还会分享 AI 在远程医疗、智能健康管理等领域的创新实践,如可穿戴设备结合 AI 算法实时监测心血管疾病高危人群的生命体征,提前预警潜在风险,为患者提供全方位、全周期的健康守护。本期前沿论坛中,我们会深入讲解该框架的技术细节,包括基于 Stable Diffusion 和 ViT 构建的模型架构,以及如何对合成数据质量进行严格评估,确保其能有效助力模型训练。在治疗方案制定上,AI 如何综合患者的基因信息、病史、实时生理数据,为肿瘤患者量身定制个性化放疗计划,在提高治疗效果的同时降低副作用。
2025-07-12 11:59:04
1305
原创 医学AI将落地临床?Nature Medicine发表的最新模型首次在真实临床环境开展评估,聚焦于跨机构的肺腺癌EGFR突变检测
本文聚焦于基于病理基础模型的计算生物标志物在肺腺癌EGFR突变检测中的临床转化,通过构建EAGLE模型并验证其真实世界应用价值,为医学AI在病理领域的落地提供了关键证据。研究团队,在内部验证(AUC 0.847)、外部验证(AUC 0.870)及前瞻性静默试验(AUC 0.890)中均展现出临床级准确性,且能跨机构、跨扫描仪保持稳健性能,解决了传统模型泛化能力不足的问题。
2025-07-12 11:57:27
1544
原创 无需依赖专家标注,自动识别病理切片的鉴别性形态特征,揭示组织由良性演变为恶性的轨迹
本文提出了一种名为组织形态表型学习(HPL)的自监督方法,用于从无注释的病理切片中自动发现组织形态学表型,无需专家标注,可应用于癌症诊断、预后预测等领域,且在多癌症研究中表现稳定。HPL能够在不需要专家注释或标签的情况下,自动发现病理切片中的鉴别性图像特征。该系统通过对图像块进行聚类来识别形态相似的组织区域,创建一个组织形态表型库,该库可以与组织学、分子和临床表型相关联。
2025-07-09 11:28:46
906
原创 首个仅需常规病理切片,基于图神经网络的 DeepTFtyper 模型助力 SCLC 分子亚型预测
DeepTFtyper模型基于图神经网络,能够将小细胞肺癌(SCLC)的组织病理学图像自动分类为分子亚型。作者类型姓名单位第一作者Xin Li温州医科大学生物医学工程学院基因组医学研究所,温州 325027第一作者Fan Yang中国医学科学院北京协和医学院国家癌症中心/国家肿瘤临床研究中心/肿瘤医院病理科,北京 100021通讯作者Meng Zhou温州医科大学生物医学工程学院基因组医学研究所,温州 325027通讯作者Lin Yang。
2025-07-09 10:54:41
1298
原创 Cancer Cell发表三级淋巴结相关研究,结合机器学习算法对TLSs进行分类,为AI探索肿瘤微环境提供了新的思路
这篇发表于《Cancer Cell》2025年6月9日的文章,主要围绕肿瘤内三级淋巴结构(TLSs)展开研究。ciTLSs 是一种新颖的计算策略,能够利用空间转录组图谱在原位环境中全面绘制三级淋巴结构(TLSs)。该系统处理多模态基因组学数据,以细胞分辨率表征 TLS 微环境,特别关注肝细胞癌(HCC)患者数据。该系统的关键创新在于其新颖的分类方案,根据未成熟 TLSs 的发育轨迹将其分为顺应性和偏离性两组。这种分类揭示了代谢微环境,特别是色氨酸代谢如何影响 TLS 成熟的异质性。主要功能。
2025-07-08 10:54:16
1228
原创 聚焦于下一代病理诊断技术,开发验证基于AI的计算病理平台,实现诊断和预后分析
本文发表于《Cell Reports Medicine》2024年9月刊,由Carina Kludt等多国研究者合作完成,聚焦于非小细胞肺癌(NSCLC)的下一代病理诊断技术,开发并验证了基于人工智能(AI)的数字病理平台,该平台可用于诊断和预后评估。本系统提供了一个全面的肺癌全切片图像(WSIs)分析流程,实现了像素级分割、有监督亚型分类以及基于基础模型的分类方法。该系统支持从原始WSI图像到训练好的模型再到推理结果的完整工作流程,并设有针对LUAD/LUSC(肺腺癌/肺鳞状细胞癌)分类的专门路径。
2025-07-07 11:23:59
729
原创 这篇一区文章基于公开数据集提供的病理切片,使用生成对抗网络进行生存分析
该文章提出了一种名为对抗性多实例学习(AdvMIL)的新型框架,用于千兆像素全切片图像(WSIs)的生存分析。AdvMIL将对抗性学习与多实例学习相结合,从千兆像素的组织病理学图像中预测事件时间分布,从而能够更准确地估计患者预后。数据处理流程(Data Pipeline):原始全切片图像(Raw WSI )经CLAM Patching(一种补丁处理方式 ),生成补丁特征(Patch Features ),部分还需额外预处理(Additional Preprocessing ,如构建图、聚类等 )。
2025-07-05 15:57:54
973
原创 通过病理切片预测癌症生物标志物,是采用回归模型还是分类模型?这篇Nature Communications能给你答案!
背景:数字病理中,深度学习已用于从全切片图像(WSI)预测癌症生物标志物,但现有方法多针对分类任务(如基因改变的有无),而生物标志物(如HRD、基因表达)常为连续值,二值化会导致信息丢失。目的:验证基于回归的深度学习是否优于基于分类的方法,开发并评估一种自监督注意力机制的弱监督回归模型(CAMIL回归)。
2025-07-04 11:16:04
1001
原创 没有数据集开展医学AI研究?这篇保姆级教程,教你筛选并下载病理切片的公开数据集!
基因组数据共享中心(GDC)是美国国家癌症研究所(NCI)的一项研究计划,其使命是为癌症研究界提供统一的存储库和癌症知识库,支持跨癌症基因组研究的数据共享,以推动精准医学。作为美国国立卫生研究院(NIH)的一部分,NCI是联邦政府开展癌症研究和培训的主要机构,致力于引领、开展和支持全国范围内的癌症研究。GDC不仅是一个数据库或工具,更是一个可扩展的知识网络,支持导入和标准化来自癌症研究项目的基因组和临床数据。
2025-07-01 10:58:24
862
原创 这篇Nature子刊发表的病理AI模型,使用公开数据训练,旨在通过常规HE切片预测免疫治疗反应,解析肿瘤微环境
这篇发表于《npj Precision Oncology》的文章,介绍了一种名为HistoTME的新型弱监督深度学习方法,旨在从非小细胞肺癌(NSCLC)患者的数字病理图像中预测肿瘤微环境(TME)组成和免疫治疗反应,为个性化免疫肿瘤学提供了新的工具和思路。原理与训练:HistoTME是一种弱监督多任务学习方法,利用数字病理基础模型,从常规收集的病理切片中推断患者的TME组成,可预测30种不同细胞类型特异性TME特征的表达。
2025-06-30 20:46:58
921
原创 纯公开数据集的多组学模型发表在Nature子刊,旨在解决泛癌种的TILS评估问题,没有内部数据集的可以参考这个套路!
该文章介绍了一种基于深度学习的泛癌种方法TILScout,用于从全切片图像(WSIs)中计算补丁级别的肿瘤浸润淋巴细胞(TIL)分数,并对其在28种癌症中的应用进行了深入分析。
2025-06-26 10:44:09
895
原创 Lancet Digit Health发表病理AI模型,整合HE图像与分子数据预测子宫内膜癌分子分类
这篇文章聚焦于医学AI在子宫内膜癌分子分型中的应用,提出了可解释深度学习模型im4MEC。研究,通过自监督学习提取图块级形态特征,模型在四折交叉验证和独立测试集上分别取得0.874和0.876的宏观平均AUROC,且能通过高注意力图块分析揭示各分子亚型的形态学关联,如POLE与MMRd的高淋巴细胞密度、p53abn的强核异型性等。文章的核心创新在于构建了兼顾性能与可解释性的深度学习框架。
2025-06-26 10:18:56
739
原创 梅奥诊所医学AI团队围绕病理组学领域的基础模型展开评估,分析数据质量以及领域特异性等因素对模型的影响
这篇文章聚焦于基础模型在组织病理学中的应用评估,由梅奥诊所团队开展。研究选取PLIP、BiomedCLIP等基础模型,与DinoSSLPath、KimiaNet等领域特定模型对比,在8个数据集(含4个内部及4个公共数据集)上进行患者级检索、补丁级检索和分类任务测试。结果显示,领域特定模型在各任务中普遍优于基础模型,如DinoSSLPath在内部结直肠癌和肝脏数据集MV@5宏平均F1分数达63%和74%,KimiaNet在乳腺、皮肤癌及CAMELYON16数据集表现突出。
2025-06-25 11:09:52
1107
原创 Nature子刊最新多模态模型,仅靠618 例患者数据支撑,即可实现非小细胞肺癌患者DFS与OS的高精度预测
疾病负担:肺癌是癌症相关死亡的主要原因,非小细胞肺癌(NSCLC)占所有肺癌病例的85%。目前临床主要依靠TNM分期指导治疗,但同一分期患者的临床结局差异显著,仅基于TNM分期难以准确判断术后干预需求。现有挑战:早期NSCLC患者术后仍有疾病进展或死亡风险,而需要术后干预的患者中也有部分无需治疗即可保持无病生存。因此,准确预测NSCLC患者的无病生存期(DFS)和总生存期(OS)对个性化治疗至关重要。研究目标。
2025-06-20 10:42:10
1412
原创 70万份影像数据构建的医学基础模型登顶Nature正刊,包含6个数据集,面向8个临床场景!
胸部X光(CXR)是大多数肺部疾病的基础成像检查方法,深度学习在自动化解读方面潜力巨大。然而,现有模型在诊断范围、泛化性、适应性、鲁棒性和可扩展性上存在局限。为解决这些问题,研究团队开发了全开放的胸部X光基础模型Ark+,旨在通过循环积累和重用多源异构专家标签知识,提升模型在胸部疾病诊断中的性能,并推动开放科学和医学AI的民主化。Ark(积累和重用知识)是一个专门为胸部X光分析设计的完全开放的AI基础模型系统。
2025-06-18 21:07:52
936
原创 港科大团队提出一种融合病理与基因数据特征的跨模态医学AI框架,进一步提升生存分析的准确性
这篇文章提出了一种用于生存分析的跨模态转换与对齐(CMTA)框架,该框架通过探索病理图像和基因组数据之间的内在跨模态相关性并传递潜在的互补信息,以提升生存分析的准确性。
2025-06-18 18:52:01
839
原创 MIA|结合手工特征与深度学习特征,实现多源混合特征的融合,准确实现浸润性乳腺癌的组织病理学图像分级
这篇文章提出了一种名为MSFusion的多源混合特征融合网络,用于通过H&E染色的组织病理学图像对浸润性乳腺癌(IBC)进行准确分级。
2025-06-16 14:50:40
772
原创 想借助AI分析肿瘤微环境,那么这篇顶刊最新提出的可学习原型引导的多实例学习框架值得参考!
三级淋巴结构(TLS)的临床意义TLS是在慢性炎症和恶性肿瘤等病理条件下形成的异位淋巴聚集体,其在肿瘤微环境中的存在与患者预后和免疫治疗反应密切相关,是重要的临床生物标志物。准确检测TLS对肿瘤免疫微环境研究和临床干预具有关键意义。检测挑战稀疏性与异质性:TLS在全玻片病理图像(WSIs)中分布稀疏,且不同癌种中形态、空间分布和细胞组成差异显著(如乳腺癌中呈紧凑簇状,肺癌中沿支气管血管结构弥散分布)。
2025-06-16 13:55:37
558
原创 Nature子刊解析为什么医学AI模型频繁发表在各大顶刊,但是在临床的应用却有限?关键在于缺乏可靠的外部验证!
临床场景:明确目标国家、人群 demographics(如年龄、性别、种族)、癌症分期及亚型(如非小细胞肺癌中的腺癌与鳞癌)。模型角色:界定其在诊断路径中的定位(如辅助临床医生、替代诊断或分诊工具)。
2025-06-13 11:29:56
1043
原创 整合临床数据以及病理图像的微环境特征,实现乳腺癌基因突变的精准预筛查
这篇研究论文提出了一种可解释的多模态人工智能模型MAIGGT,该模型整合了组织病理学微环境和电子病历(EHR)表型,用于乳腺癌胚系基因检测,尤其是BRCA1/2突变的精准预筛查。MAIGGT框架最初整合了一个基于病理图像的模型WISE-BRCA(全玻片图像系统推断BRCA1/2突变),该模型从全玻片图像(WSIs)中提取高级组织病理学特征表示,并使用多尺度Transformer架构预测BRCA1/2突变状态。我们通过广泛的多中心评估和可解释性分析验证了WISE-BRCA的预测性能。
2025-06-13 11:22:33
706
原创 Nature Methods发表多组学基础模型,聚焦于组织病理与转录组数据的多模态整合难题
在计算生物学领域,人工智能虽已推动基因表达预测、组织注释等任务发展,但现有模型多局限于单一模态(组学或图像分析),缺乏整合组织形态学与转录组学的统一框架。为解决这一问题,研究团队开发了OmiCLIP视觉组学基础模型及Loki平台,旨在通过多模态数据融合,实现组织病理图像与转录组学的深度关联分析。
2025-06-12 11:12:15
1027
原创 想构建多模态医学AI模型,但是不知道放射影像、病理图像、文本、组学等多源数据如何分析,那么这篇最新综述能给你一些启发!
本文是一篇关于医学多模态AI的范围综述,分析了2018-2024年发表的432篇相关论文,总结了多模态AI在医学领域的技术挑战、临床应用现状及未来方向。2018至2024年间,医学研究中多模态人工智能(AI)的研究图景随着聚焦多模态整合的文献数量增长而不断扩展。将本综述纳入的432篇文章按年份细分(图2a)可见其数量迅速增加,从2018年的3篇增长至本综述数据收集截止时2024年的150篇。本综述根据数据模态对文献进行分类,并在此进行概括性描述。多模态医疗AI的前沿算法设计。
2025-06-09 11:37:33
695
原创 Nature Medicine发表多模态医学AI基础模型,涵盖4种成像方式,收集了来自11个机构的214万多张图像
本文介绍了一种名为PanDerm的多模态皮肤学基础模型,该模型通过自监督学习对来自11个临床机构、4种成像方式的超200万张真实皮肤病图像进行预训练,在28个不同基准测试中均表现出最先进的性能,且在使用仅10%的标记数据时往往优于现有模型,展现出在多种临床场景中改善患者护理的潜力,并为其他医学专科开发多模态基础模型提供了参考。PanDerm在超过200万张跨四种成像模态的皮肤病图像上进行了预训练,可作为下游任务(包括分类、分割和临床诊断应用)的主干模型。
2025-06-09 11:30:52
985
原创 哈佛大学团队发布首个面向空间蛋白质组学领域的基础模型,可完成细胞表型以及组织微环境等复杂任务的分析
空间蛋白质组学通过单细胞分辨率成像解析组织内蛋白质空间分布,对肿瘤微环境分析、治疗响应预测等具有重要意义。然而,传统分析依赖细胞分割和单一标记阈值,难以捕捉多标记协同表达及复杂空间特征。本文提出首个空间蛋白质组学基础模型KRONOS,通过大规模自监督学习突破传统方法的局限性,实现细胞表型分析、区域分类、患者分层等多任务的高效建模。什么是KRONOS?KRONOS是一种与标记组合无关的空间蛋白质组学基础模型,支持对不同实验设置下的多重成像数据进行分析。
2025-06-07 13:46:59
1245
原创 这篇影响因子27+的医学AI综述,详细介绍了人工智能在癌症诊疗领域的最新研究与应用进展
这篇文章系统综述了人工智能(AI)在癌症诊疗领域的研究现状与应用进展,聚焦于AI在影像诊断、基因组学、治疗干预及患者管理等核心场景的创新实践。在影像诊断层面,深度学习模型如卷积神经网络(CNNs)已深度融入CT、MRI、病理全切片图像(WSIs)等多模态影像分析,显著提升早期癌症检测精度。例如Prov-GigaPath和CHIEF等基础模型通过处理超大规模病理数据,实现了肿瘤分型、突变预测等任务的性能突破,部分模型在特定任务上的准确率超过95%。
2025-06-04 14:05:01
1025
原创 基于卵巢癌亚型分类任务,系统比较17种可用于组织病理学数据的模型性能,快速选择适合自己数据的基础模型
背景:卵巢癌是全球女性第八大常见癌症,组织学亚型(如高级别浆液性癌、子宫内膜样癌等)的准确诊断对治疗和预后至关重要,但病理学家诊断一致性约80%,且传统AI模型(如基于ImageNet预训练的ResNet)在组织病理学图像中表现有限。目的:评估组织病理学基础模型在卵巢癌亚型分类中的性能,比较其与传统模型的差异,并探索超参数调优、预处理技术的影响。
2025-06-04 14:00:27
1006
原创 结合临床数据与病理切片,利用深度学习从结直肠癌组织切片中预测多种生物标志物
本文是发表于《Cell Reports Medicine》的回顾性多中心研究,旨在探索深度学习(DL)从结直肠癌(CRC)组织病理切片中预测多种生物标志物状态的能力,比较不同DL架构性能,验证模型在外部患者群体的泛化性,同时通过可视化技术分析模型决策依据,为临床应用提供参考。特征提取Marugoto使用预训练模型从全切片图像图块中提取特征。
2025-06-03 11:12:59
1322
原创 Nat. Commun|借助深度学习分层方法,量化胎盘组织学全切片图像中细胞和显微解剖组织结构的变异性
胎盘病理评估对母婴健康管理至关重要,但其异质性和时间变异性给组织学分析带来挑战。本文介绍了一种名为HAPPY(Histology Analysis Pipeline.PY)的深度学习分层方法,用于量化胎盘组织学全切片图像中细胞和显微解剖组织结构的变异性。类别姓名单位第一作者牛津大学妇女与生殖健康系、牛津大学李嘉诚健康信息与发现中心大数据研究所通讯作者牛津大学妇女与生殖健康系、牛津大学李嘉诚健康信息与发现中心大数据研究所通讯作者。
2025-06-01 10:21:25
986
原创 Nat. Commun|结合视觉基础模型与大语言模型,直接从病理图像生成病理报告
本文介绍了由德国亥姆霍兹慕尼黑中心等机构开发的视觉语言模型HistoGPT,其核心功能是从高分辨率组织全切片图像(WSIs)生成皮肤科病理报告。
2025-05-30 15:42:14
973
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人