POJ - 1201 Intervals差分约束

本文介绍了一种解决区间选择问题的算法,通过构建图模型并运用SPFA算法求解最短路径,确保每个给定区间内选择的数不少于特定条件。详细解释了算法的实现过程,包括不等式的建立、前缀和技巧的应用及最终答案的获取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目大意

给定n个区间, 求选择若干个数, 保证每个区间中选择的数不少于c

思路
根据题目的条件写出不等式
在这里插入图片描述

  • 在建图时, 由于用到了前缀合, 我们额a,b的取值范围增加1, 把取值范围变为1~50001
  • 最后dis[50001]里面存的就是本题的答案
  • 由于数据保证了c<=b-a+1, 所以本题一定有解
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;

const int N = 50010, M = 150010;

int e[M], ne[M], w[M], h[N], len;
int n;
int dis[N];
bool vis[N];

void add(int a, int b, int c)
{
    e[len] = b;
    w[len] = c;
    ne[len] = h[a];
    h[a] = len++;
}

void spfa()
{
    memset(dis, -0x3f, sizeof dis);
    queue<int> q;
    q.push(0);
    dis[0] = 0;
    vis[0] = true;
    while(q.size())
    {
        int x = q.front();
        q.pop();
        vis[x] = false;
        for(int i = h[x]; ~i; i = ne[i])
        {
            int y = e[i];
            if(dis[y] < dis[x] + w[i])
            {
                dis[y] = dis[x] + w[i];
                if(!vis[y])
                {
                    q.push(y);
                    vis[y] = true; 
                }
            }
        }
    }
    
}

int main()
{
    cin >> n;
    memset(h, -1, sizeof h);
    for(int i = 1; i<= n; i++)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        a ++, b++;
        add(a - 1, b, c);
    }
    
    for(int i = 1; i <= 50001; i++)
        add(i - 1, i, 0), add(i, i - 1, -1);
    
    spfa();
    
    printf("%d", dis[50001]);
        
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值