- 前面几篇博客我已经陆续整理了YOLO系列、OpenCV系列、C++系列的面试题知识点,若有需要直接访问以下链接。
- 面试问题总结——关于YOLO系列(一)
- 面试问题总结——关于YOLO系列(二)
- 面试问题总结——关于YOLO系列(三)
- 面试问题总结——关于OpenCV
- 面试问题总结——编程题关于IOU、NMS
- 面试问题总结——关于C++(一)
- 面试问题总结——关于C++(二)
- 作为最后一个系列,主要介绍深度学习、机器学习、Python相关的一些面试题,其中包括秋招时遇到的问题还有牛客网面经上我搜集整理的一些面试高频题。
面试中遇到的问题及解答
- 1.YOLOv4相比于YOLOv3,做了哪些改进,能讲讲吗?
- 2.你在模型训练的过程中,对于loss值若没有收敛,该有哪些操作呢?该使用什么办法?
- 3.在数字图像处理中,腐蚀和膨胀的原理是什么?
- 4.关于NMS,简单讲讲?
- 5.关于K-means算法的相关知识
- 6.你项目中用的拍照相机分辨率是3072×2048的,而YOLOv4网络的输入尺寸是608×608×3,这么做的话,图像的尺寸会被压缩,小的目标可能会被忽略,那如果要识别小的目标你怎么办?既要保证识别的速度,如何做?
- 7.SPP,YOLO了解吗?
- 8.目标检测正负样本不均衡怎么解决?
- 9.one-stage与two-stage都有哪些?具体各自优势在哪里?one-stage和two-stage两者有什么特点?
- 10.简单介绍下残差层