概率统计复习——样本与抽样分布

本文总结了概率统计中的样本与抽样分布概念,介绍了样本定义、抽样分布、统计量及其性质,并详细阐述了正态总体下常见统计量的分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概率统计复习——样本与抽样分布

总结自浙江大学盛骤老师等人的《概率论与数理统计》第四版

一、样本定义

定义,设 XXX 是具有分布函数 FFF 的随机变量,若 X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,,Xn 是具有同一分布函数 FFF 的、相互独立的随机变量,则称 X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,,Xn 为从分布函数 FFF 得到的容量为 nnn 的简单随机样本,简称样本,它们的观察值 x1,x2,⋯ ,xnx_1,x_2,\cdots,x_nx1,x2,,xn 称为样本值,又称为 XXXnnn 个独立的观察值。

由于 XiX_iXi 之间相互独立,因此 (X1,X2,⋯ ,Xn)(X_1,X_2,\cdots,X_n)(X1,X2,,Xn) 的分布函数和概率密度函数分别为
F∗(x1,x2,⋯ ,xn)=∏i=1nF(xi)f∗(x1,x2,⋯ ,xn)=∏i=1nf(xi) F^*(x_1,x_2,\cdots,x_n)=\prod_{i=1}^nF(x_i)\\ f^*(x_1,x_2,\cdots,x_n)=\prod_{i=1}^nf(x_i) F(x1,x2,,xn)=i=1nF(xi)f(x1,x2,,xn)=i=1nf(xi)

二、抽样分布

对样本进行处理时,使用的往往不是样本本身,而是基于样本的不同函数,利用这些函数进行统计推断。

定义,设 X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,,Xn 是来自总体 XXX 的一个样本,g(X1,X2,⋯ ,Xn)g(X_1,X_2,\cdots,X_n)g(X1,X2,,Xn)X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,,Xn 的函数。若 ggg 中不包含未知参数,则称 g(X1,X2,⋯ ,Xn)g(X_1,X_2,\cdots,X_n)g(X1,X2,,Xn) 是统计量。

由于 X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,,Xn 是随机变量,而统计量 g(X1,X2,⋯ ,Xn)g(X_1,X_2,\cdots,X_n)g(X1,X2,,Xn) 是随机变量的函数,因而统计量也是一个随机变量。若 x1,x2,⋯ ,xnx_1,x_2,\cdots,x_nx1,x2,,xn 是样本 X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,,Xn 的观测值,则 g(x1,x2,⋯ ,xn)g(x_1,x_2,\cdots,x_n)g(x1,x2,,xn)g(X1,X2,⋯ ,Xn)g(X_1,X_2,\cdots,X_n)g(X1,X2,,Xn) 的观测值。

下面列出常用的统计量:

  • 样本平均值
    Xˉ=1n∑i=1nXi \bar{X}=\frac{1}{n}\sum_{i=1}^nX_i Xˉ=n1i=1nXi

  • 样本方差
    S2=1n−1∑i=1n(Xi−Xˉ)2=1n−1(∑i=1nXi2−nXˉ2) S^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-\bar{X})^2=\frac{1}{n-1}(\sum_{i=1}^nX_i^2-n\bar{X}^2) S2=n11i=1n(XiXˉ)2=n11(i=1nXi2nXˉ2)

  • 样本标准差
    S=S2 S=\sqrt{S^2} S=S2

  • 样本 kkk 阶(原点)矩
    Ak=1n∑i=1nXik,k=1,2,⋯ A_k=\frac{1}{n}\sum_{i=1}^nX_i^k,k=1,2,\cdots Ak=n1i=1nXik,k=1,2,

  • 样本 kkk 阶中心距
    Bk=1n∑i=1n(Xi−Xˉ)k,k=2,3,⋯ B_k=\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^k,k=2,3,\cdots Bk=n1i=1n(XiXˉ)k,k=2,3,

注,在方差的计算过程中,其分母为 nnn,在样本方差的计算中,分母为 n−1n-1n1。关于这么做的原因可以见博客 https://www.cnblogs.com/zzdbullet/p/10087196.html,描写的较为简单清晰。

定义,X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,,Xn 是总体 FFF 的一个样本,用 S(x),−∞<x<∞S(x),-\infin<x<\infinS(x),<x< 表示 X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,,Xn 中不大于 xxx 的随机变量的个数。定义经验分布函数 Fn(x)F_n(x)Fn(x)
Fn(x)=1nS(x),−∞<x<∞ F_n(x)=\frac{1}{n}S(x),-\infin<x<\infin Fn(x)=n1S(x),<x<

经验分布函数与总体分布函数相对应。

三、关于统计量的性质

均值:

  • E(C)=CE(C)=CE(C)=C
  • E(CX)=CE(X)E(CX)=CE(X)E(CX)=CE(X)
  • E(X+Y)=E(X)+E(Y)E(X+Y)=E(X)+E(Y)E(X+Y)=E(X)+E(Y)
  • X,YX,YX,Y 相互独立,有 E(XY)=E(X)E(Y)E(XY)=E(X)E(Y)E(XY)=E(X)E(Y)

方差:

  • D(C)=0D(C)=0D(C)=0
  • D(CX)=C2D(X),D(X+C)=D(X)D(CX)=C^2D(X),D(X+C)=D(X)D(CX)=C2D(X),D(X+C)=D(X)
  • D(X+Y)=D(X)+D(Y)+2E{ (X−E(X))(Y−E(Y)) }D(X+Y)=D(X)+D(Y)+2E\set{(X-E(X))(Y-E(Y))}D(X+Y)=D(X)+D(Y)+2E{(XE(X))(YE(Y))}
  • X,YX,YX,Y 相互独立,则 D(X+Y)=D(X)+D(Y)D(X+Y)=D(X)+D(Y)D(X+Y)=D(X)+D(Y)

四、有关正态总体的几个常用统计量的分布

一、χ2\chi^2χ2 分布

X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,,Xn 是来自总体 N(0,1)N(0,1)N(0,1) 的样本,则称统计量
χ2=X12+X22+⋯+Xn2 \chi^2=X^2_1+X^2_2+\cdots+X^2_n χ2=X12+X22++Xn2
服从自由度为 nnnχ2\chi^2χ2 分布,记为 χ2∼χ2(n)\chi^2\sim\chi^2(n)χ2χ2(n)

χ2(n)\chi^2(n)χ2(n) 分布的概率密度为
f(y)={12n/2Γ(n/2)yn/2−1e−y/2,y>0,0,otherwise f(y)=\begin{cases} \frac{1}{2^{n/2}\Gamma(n/2)}y^{n/2-1}e^{-y/2},&y>0,\\ 0,&otherwise \end{cases} f(y)={2n/2Γ(n/2)1yn/21ey/2,0,y>0,otherwise

证明:

  • 已知 X∼Φ(μ,σ2)X\sim \Phi(\mu,\sigma^2)XΦ(μ,σ2),则 Y=X2Y=X^2Y=X2 的分布为
    fY(y)={12πy−1/2e−1/2,y>0,0,y≤0. f_Y(y)=\begin{cases} \frac{1}{\sqrt{2\pi}}y^{-1/2}e^{-1/2},&y>0,\\ 0,&y\leq 0. \end{cases} fY(y)={2π1y1/2e1/2,0,y>0,y0.

    fY(y)=Γ(12,12)f_Y(y)=\Gamma(\frac{1}{2},\frac{1}{2})fY(y)=Γ(21,21)

  • 又伽马分布具有可加性,则 χ2∼Γ(n2,12)\chi^2\sim\Gamma(\frac{n}{2},\frac{1}{2})χ2Γ(2n,21)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-T8XZbGKY-1665057868962)(D:\CNN\Note\Asserts\chi2.png)]

性质:

  • Γ\GammaΓ 分布的可加性易得 χ2\chi^2χ2 分布的可加性
    χ12∼χ2(n1),χ22∼χ2(n2)有χ12+χ22∼χ2(n1+n2) \chi^2_1\sim\chi^2(n_1),\chi^2_2\sim\chi^2(n_2)\\ 有 \chi^2_1+\chi^2_2\sim\chi^2(n_1+n_2) χ12χ2(n1),χ22χ2(n2)χ12+χ22χ2(n1+n2)

  • χ2∼χ2(n)\chi^2\sim\chi^2(n)χ2χ2(n),则 E(χ2)=n,D(χ2)=2nE(\chi^2)=n,D(\chi^2)=2nE(χ2)=n,D(χ2)=2n

二、t 分布

X∼N(0,1)X\sim N(0,1)XN(0,1)Y∼χ2(n)Y\sim\chi^2(n)Yχ2(n),且 X,YX,YX,Y 相互独立,称随机变量
t=XY/n t=\frac{X}{\sqrt{Y/n}} t=Y/nX
服从自由度为 nnnttt 分布,记为 t∼t(n)t\sim t(n)tt(n),其又称为学生氏分布。概率密度函数为
h(t)=Γ[(n+1)/2]πnΓ(n/2)(1+t2n)−(n+1)/2,−∞<x<∞ h(t)=\frac{\Gamma[(n+1)/2]}{\sqrt{\pi n}\Gamma(n/2)}(1+\frac{t^2}{n})^{-(n+1)/2},-\infin<x<\infin h(t)=πnΓ(n/2)Γ[(n+1)/2](1+nt2)(n+1)/2,<x<
nnn 足够大时,ttt 近似标准正态分布。当 n>45n>45n>45 时,使用正态近似。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wYuv2bKh-1665057868966)(D:\CNN\Note\Asserts\student.png)]

三、FFF 分布

U∼χ2(n1),V∼χ2(n2)U\sim\chi^2(n_1),V\sim\chi^2(n_2)Uχ2(n1),Vχ2(n2),且 U,VU,VU,V 相互独立,则称随机变量
F=U/n1V/n2 F=\frac{U/n_1}{V/n_2} F=V/n2U/n1
为服从自由度为 (n1,n2)(n_1,n_2)(n1,n2)FFF 分布,记为 F∼F(n1,n2)F\sim F(n_1,n_2)FF(n1,n2)。其概率密度函数为
f(x)=Γ((n1+n2)/2)(n1/n2)n1/2xn1/2−1Γ(n1/2)Γ(n2/2)[(n1/n2)x+1](n1+n2)/2x>0 f(x) = \frac{\Gamma((n_{1}+n_{2})/2)(n_{1}/n_{2})^{n_{1}/2}x^{n_{1}/2-1}} {\Gamma(n_{1}/2)\Gamma(n_{2}/2)[(n_{1}/n_{2})x+1]^{(n_{1}+n_{2})/2}} \qquad \qquad x > 0 f(x)=Γ(n1/2)Γ(n2/2)[(n1/n2)x+1](n1+n2)/2Γ((n1+n2)/2)(n1/n2)n1/2xn1/21x>0
由定义可知,若 F∼F(n1,n2)F\sim F(n_1,n_2)FF(n1,n2),则 1F∼F(n2,n1)\frac{1}{F}\sim F(n_2,n_1)F1F(n2,n1)FFF 分布的一个性质为 F1−α(n1,n2)=1Fα(n2,n1)F_{1-\alpha}(n_1,n_2)=\frac{1}{F_\alpha(n_2,n_1)}F1α(n1,n2)=Fα(n2,n1)1,其中 FαF_\alphaFαFFF 分布的 α\alphaα 分位点。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ilYMP7LW-1665057868975)(D:\CNN\Note\Asserts\F.png)]

四、正态总体的样本均值与样本方差的分布

设总体的均值为 μ\muμ,方差为 σ2\sigma^2σ2Xi,i=1,⋯ ,nX_i,i=1,\cdots,nXi,i=1,,nXXX 的一个样本,Xˉ,S2\bar{X},S^2Xˉ,S2 分别是样本均值和方差,则有
E(Xˉ)=μ,D(S2)=σ2n E(\bar{X})=\mu,D(S^2)=\frac{\sigma^2}{n} E(Xˉ)=μ,D(S2)=nσ2
进一步,假设 X∼N(μ,σ2)X\sim N(\mu,\sigma^2)XN(μ,σ2),则 Xˉ\bar{X}Xˉ 也满足正态分布(正态分布的可加性),得到以下定理

  • 定理一,设 X1,⋯ ,XnX_1,\cdots,X_nX1,,Xn 为来自正态总体 N(μ,σ2)N(\mu,\sigma^2)N(μ,σ2) 的样本,Xˉ\bar{X}Xˉ 是样本均值,有
    Xˉ∼N(μ,σ2/n) \bar{X}\sim N(\mu,\sigma^2/n) XˉN(μ,σ2/n)

  • 定理二,设 X1,⋯ ,XnX_1,\cdots,X_nX1,,Xn 为来自正态总体 N(μ,σ2)N(\mu,\sigma^2)N(μ,σ2) 的样本,Xˉ,S2\bar{X},S^2Xˉ,S2 分别是样本均值和方差,有

    1. (n−1)S2σ2∼χ2(n−1)\frac{(n-1)S^2}{\sigma^2}\sim\chi^2(n-1)σ2(n1)S2χ2(n1)
    2. Xˉ\bar{X}XˉS2S^2S2 相互独立
  • 定理三
    Xˉ−μS/n∼t(n−1) \frac{\bar{X}-\mu}{S/\sqrt{n}}\sim t(n-1) S/nXˉμt(n1)

  • 定理四,设 X1,⋯ ,Xn1X_1,\cdots,X_{n_1}X1,,Xn1Y1,⋯ ,Yn2Y_1,\cdots,Y_{n_2}Y1,,Yn2 分别是来自正态总体 N(μ1,σ12)N(\mu_1,\sigma_1^2)N(μ1,σ12)N(μ2,σ22)N(\mu_2,\sigma^2_2)N(μ2,σ22) 的样本,且这两个样本相互独立。设 Xˉ,Yˉ\bar{X},\bar{Y}Xˉ,Yˉ 分别是这两个样本的均值,S12,S22S_1^2,S_2^2S12,S22 分别是这两个样本的方差。有

    1. S12/S22σ12/σ22∼F(n1−1,n2−1)\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}\sim F(n_1-1,n_2-1)σ12/σ22S12/S22F(n11,n21)

    2. σ12=σ22=σ\sigma_1^2=\sigma_2^2=\sigmaσ12=σ22=σ
      (Xˉ−Yˉ)−(μ1−μ2)Sw1n1+1n2∼t(n1+n2−2) \frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{S_{w} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim t\left(n_{1}+n_{2}-2\right) Swn11+n21(XˉYˉ)(μ1μ2)t(n1+n22)
      其中
      Sw2=(n1−1)S12+(n2−1)S22n1+n2−2,Sw=Sw2 S_{w}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}, \quad S_{w}=\sqrt{S_{w}^{2}} Sw2=n1+n22(n11)S12+(n21)S22,Sw=Sw2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值