- 博客(13)
- 资源 (5)
- 收藏
- 关注
原创 Learning Concordant Attention via Target-aware Alignment for Visible-Infrared Person ReID论文笔记
Learning Concordant Attention via Target-aware Alignmentfor Visible-Infrared Person Re-identification论文笔记
2023-10-23 23:18:19
416
1
原创 Modality Unifying Network for Visible-Infrared Person Re-Identification论文阅读
Modality Unifying Network for Visible-Infrared Person Re-Identification笔记
2023-10-20 23:00:25
593
1
原创 交叉编译器命名规则笔记
softfp:armel架构(对应的编译器为gcc-arm-linux-gnueabi)采用的默认值,用fpu计算,但是传参数用普通寄存器传,这样中断的时候,只需要保存普通寄存器,中断负荷小,但是参数需要转换成浮点的再计算。hard:armhf架构(对应的编译器gcc-arm-linux-gnueabihf)采用的默认值,用fpu计算,传参数也用fpu中的浮点寄存器传,省去了转换,性能最好,但是中断负荷高。两者主要区别是,ABI是计算机上的,EABI是嵌入式平台上(如ARM,MIPS等)。
2023-09-19 15:00:48
346
原创 pytorch中tensor去标准化
有时候我们在训练网络的时候会在数据预处理中加入标准化操作Normalize,这时如果我们在网络中要查看输入的图片,就会发现图片失真,这是因为标准化操作改变了图片原有的像素值,如果需要恢复到原图片,就需要去标准化操作。
2023-07-28 11:57:48
356
1
原创 Towards a Unified Middle Modality Learning for Visible-Infrared Person Re-Identification论文笔记
论文阅读:Towards a Unified Middle Modality Learning forVisible-Infrared Person Re-Identification
2023-07-18 22:23:04
866
原创 什么是深度学习中的优化器--笔记
什么是优化器在深度学习中,有损失的概念,损失告诉了我们模型在当前时刻的表现,我们需要利用损失来优化我们的模型,使其性能更好,那么如何优化呢?实际上,我们需要做的是计算损失,并且尽量将损失减小。神经网络的每一层都有很多的权重,这些参数决定着网络的输出,也决定着损失的大小,因此,以减小损失的方式更新权重,这个过程就叫做优化。优化器的作用就是优化网络。常用的优化器SGD(随机梯度下降)每次只选择一个样本的数据来进行更新梯度。优点是参数更新快,缺点是每次更新采用的数据量小,容易震荡。公式如下:BGD(
2022-04-10 18:26:11
1871
1
原创 Pytorch中的Variable
Pytorch中的Variablepytorch两个基本对象:Tensor(张量)和Variable(变量)其中,tensor不能反向传播,variable可以反向传播。Varibale包含三个属性:●data: 存储了Tensor, 是本体的数据●grad: 保存了data的梯度, 本事是个Variable而非Tensor, 与data形状一致●grad_ fn:指向Function对象, 用于反向传播的梯度计算之用,表示是通过什么操作得到这个变量的例如( 加减乘除、卷积、反置卷积)用法:
2022-04-10 17:33:31
2210
原创 嵌入式Linux学习之文件操作命令
文章目录一、文件操作命令1.创建新文件命令touch一、文件操作命令1.创建新文件命令touchtouch不仅仅可以用来创建文本文档,其他类型的文件也可以创建,创建的命令格式如下:touch [参数] [文件名]比如在test1创建...
2021-08-14 17:19:01
2405
1
原创 嵌入式linux学习之Shell操作
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、Shell操作1.Shell简介2.Shell基本操作3.常用Shell命令1、目录信息查看命令ls2、目录切换命令cd总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、Shell操作1.Shell简介在学习linux的时候经常会看到She
2021-08-14 15:03:56
781
1
原创 蓝桥杯嵌入式国赛模块训练之数码管
蓝桥杯嵌入式国赛模块训练之——————数码管文章目录蓝桥杯嵌入式国赛模块训练之——————数码管前言一、电路原理图1.共阴极数码管2.SN74LS595N3. 扩展板跳线帽连接二、驱动代码1.seg.h2.seg.c总结前言数码管是蓝桥杯嵌入式国赛需准备的第一个模块,然而在国赛中数码管的驱动官方是不会给的,需要我们自己编写,乍一看似乎有点繁琐,但是稍微看一会之后就会发现其实没什么难度,能看懂电路图,搞清楚SN74LS595N这个“八位输出锁存移位寄存器”的工作原理之后一切就迎刃而解了。一、电路原理
2021-05-22 01:18:34
2208
11
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人