自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 资源 (5)
  • 收藏
  • 关注

原创 Learning Concordant Attention via Target-aware Alignment for Visible-Infrared Person ReID论文笔记

Learning Concordant Attention via Target-aware Alignmentfor Visible-Infrared Person Re-identification论文笔记

2023-10-23 23:18:19 416 1

原创 Modality Unifying Network for Visible-Infrared Person Re-Identification论文阅读

Modality Unifying Network for Visible-Infrared Person Re-Identification笔记

2023-10-20 23:00:25 593 1

原创 交叉编译器命名规则笔记

softfp:armel架构(对应的编译器为gcc-arm-linux-gnueabi)采用的默认值,用fpu计算,但是传参数用普通寄存器传,这样中断的时候,只需要保存普通寄存器,中断负荷小,但是参数需要转换成浮点的再计算。hard:armhf架构(对应的编译器gcc-arm-linux-gnueabihf)采用的默认值,用fpu计算,传参数也用fpu中的浮点寄存器传,省去了转换,性能最好,但是中断负荷高。两者主要区别是,ABI是计算机上的,EABI是嵌入式平台上(如ARM,MIPS等)。

2023-09-19 15:00:48 346

原创 pytorch中tensor去标准化

有时候我们在训练网络的时候会在数据预处理中加入标准化操作Normalize,这时如果我们在网络中要查看输入的图片,就会发现图片失真,这是因为标准化操作改变了图片原有的像素值,如果需要恢复到原图片,就需要去标准化操作。

2023-07-28 11:57:48 356 1

原创 Towards a Unified Middle Modality Learning for Visible-Infrared Person Re-Identification论文笔记

论文阅读:Towards a Unified Middle Modality Learning forVisible-Infrared Person Re-Identification

2023-07-18 22:23:04 866

原创 ubuntu下anaconda虚拟环境打包

ubuntu下anaconda虚拟环境打包

2023-07-15 16:47:38 1673 1

原创 pytorch中data.DataLoader用法

pytorch中data.DataLoader的用法

2022-06-22 14:43:06 9365 1

原创 什么是深度学习中的优化器--笔记

什么是优化器在深度学习中,有损失的概念,损失告诉了我们模型在当前时刻的表现,我们需要利用损失来优化我们的模型,使其性能更好,那么如何优化呢?实际上,我们需要做的是计算损失,并且尽量将损失减小。神经网络的每一层都有很多的权重,这些参数决定着网络的输出,也决定着损失的大小,因此,以减小损失的方式更新权重,这个过程就叫做优化。优化器的作用就是优化网络。常用的优化器SGD(随机梯度下降)每次只选择一个样本的数据来进行更新梯度。优点是参数更新快,缺点是每次更新采用的数据量小,容易震荡。公式如下:BGD(

2022-04-10 18:26:11 1871 1

原创 Pytorch中的Variable

Pytorch中的Variablepytorch两个基本对象:Tensor(张量)和Variable(变量)其中,tensor不能反向传播,variable可以反向传播。Varibale包含三个属性:●data: 存储了Tensor, 是本体的数据●grad: 保存了data的梯度, 本事是个Variable而非Tensor, 与data形状一致●grad_ fn:指向Function对象, 用于反向传播的梯度计算之用,表示是通过什么操作得到这个变量的例如( 加减乘除、卷积、反置卷积)用法:

2022-04-10 17:33:31 2210

原创 深度学习中epoch,batch的概念--笔记

深度学习中epoch,batch的概念

2022-04-10 16:51:24 5247

原创 嵌入式Linux学习之文件操作命令

文章目录一、文件操作命令1.创建新文件命令touch一、文件操作命令1.创建新文件命令touchtouch不仅仅可以用来创建文本文档,其他类型的文件也可以创建,创建的命令格式如下:touch [参数] [文件名]比如在test1创建...

2021-08-14 17:19:01 2405 1

原创 嵌入式linux学习之Shell操作

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、Shell操作1.Shell简介2.Shell基本操作3.常用Shell命令1、目录信息查看命令ls2、目录切换命令cd总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、Shell操作1.Shell简介在学习linux的时候经常会看到She

2021-08-14 15:03:56 781 1

原创 蓝桥杯嵌入式国赛模块训练之数码管

蓝桥杯嵌入式国赛模块训练之——————数码管文章目录蓝桥杯嵌入式国赛模块训练之——————数码管前言一、电路原理图1.共阴极数码管2.SN74LS595N3. 扩展板跳线帽连接二、驱动代码1.seg.h2.seg.c总结前言数码管是蓝桥杯嵌入式国赛需准备的第一个模块,然而在国赛中数码管的驱动官方是不会给的,需要我们自己编写,乍一看似乎有点繁琐,但是稍微看一会之后就会发现其实没什么难度,能看懂电路图,搞清楚SN74LS595N这个“八位输出锁存移位寄存器”的工作原理之后一切就迎刃而解了。一、电路原理

2021-05-22 01:18:34 2208 11

行人重识别数据集,RegDB和SYSU-MM01

行人重识别数据集,RegDB和SYSU-MM01

2022-04-10

ADS8688.rar

基于STM32的ADS8688驱动,标准库版,包含头文件和源文件

2021-04-22

AD9959DDS.rar

ADS9959驱动代码,包含头文件和源文件,STM32标准库

2021-04-22

mnist.pkl.gz

mnist.pkl.gz

2022-01-19

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除