离散型随机变量及其分布律(习题部分)

本文解析了概率论中的三个经典案例:抛掷骰子求小点数分布律、保险赔偿概率计算及比赛胜制选择,深入浅出地展示了概率论的实际应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

例一·抛掷骰子

将一颗骰子抛掷两次,以XXX表示两次中得到的小的点数,试求XXX的分布律.

思路

Y1,Y2Y_1,Y_2Y1,Y2表示第一次、第二次投掷时骰子出现的点数,样本空间就可以表示为S={(y1,y2)∣y1=1,2,...,6;y2=1,2,...6}S=\{(y_1,y_2)|y_1=1,2,...,6;y_2=1,2,...6\}S={(y1,y2)y1=1,2,...,6;y2=1,2,...6}共有6×6=366×6=366×6=36个样本点.
X=min{Y1,Y2}X=min\{Y_1,Y_2\}X=min{Y1,Y2}所有可能取值为1,2,3,4,5,61,2,3,4,5,61,2,3,4,5,6,事件{X=k}(k=1,2,3,4,5,6)\{X=k\}(k=1,2,3,4,5,6){X=k}(k=1,2,3,4,5,6)发生不外乎以下三种情况:
(1)Y1=k且Y2=k+1,k+2,...6(共有6−k个点);(1)Y_1=k且Y_2=k+1,k+2,...6(共有6-k个点);(1)Y1=kY2=k+1,k+2,...6(6k);
(2)Y2=k且Y1=k+1,k+2,...6(共有6−k个点);(2)Y_2=k且Y_1=k+1,k+2,...6(共有6-k个点);(2)Y2=kY1=k+1,k+2,...6(6k);
(3)Y1=k且Y2=k(共有1点);(3)Y_1=k且Y_2=k(共有1点);(3)Y1=kY2=k(1);
因而事件共包含(6−k)+(6−k)+1=13−2k(6-k)+(6-k)+1=13-2k(6k)+(6k)+1=132k个样本点.

答案

P{X=k}=13−2k36,k=1,2,3,4,5,6P\{X=k\}=\frac{13-2k}{36},k=1,2,3,4,5,6P{X=k}=36132k,k=1,2,3,4,5,6

例二·保险赔偿

保险公司在一天内承保了5000张相同年龄.为期一年的寿险保单.每人一份.在合同有效期内若投保人死亡,则公司需赔付3万元.设在一年内,该年龄段的死亡率为0.0015,且各投保人是否死亡相互独立.求该公司对于这批投保人的赔付总额不超过30万元的概率(利用泊松定理计算).

思路

读题“赔付总额不超过30万元”即在投保期内投保人死亡的人数不超过30/3=1030/3=1030/3=10人,设这批投保人在一年内死亡人数为XXX,则由“各投保人是否死亡相互独立”知X∼b(5000,0.0015)\begin{aligned}&X \sim b(5000,0.0015)\\\end{aligned}Xb(5000,0.0015)从而所求的概率就为P{X≤10}=∑k=010C5000k(0.0015)k(1−0.0015)5000−k\begin{array}{l} P\{X \leq 10\}=\sum_{k=0}^{10} C_{5000}^{k}(0.0015)^{k}(1-0.0015)^{5000-k} \\\end{array}P{X10}=k=010C5000k(0.0015)k(10.0015)5000k
若用泊松近似可以认为X∼π(λ)X \sim \pi(\lambda)Xπ(λ)(λ=np=5000×0.0015=7.5)(\lambda=np=5000×0.0015=7.5)(λ=np=5000×0.0015=7.5),于是P{X≤10}≈∑k=0107.5ke−7.5k!\begin{array}{l}P\{X \leq 10\} \approx \sum_{k=0}^{10} \frac{7.5^{k} e^{-7.5}}{k !} \end{array}P{X10}k=010k!7.5ke7.5

答案

查表算得P{X≤10}≈0.8622查表算得P\{X \leq 10\} \approx 0.8622P{X10}0.8622

例三·规则的选择

甲和乙比赛,甲的实力更强一点每一局甲赢的概率为p,这里0.5<p<1.0.5<p<1.0.5<p<1.设各局胜负相互独立设kkk是一正整数.问:对甲而言,2k−1局k胜制2k- 1局k胜制2k1k有利,还是2k+1局k+1胜制2k+ 1局k + 1胜制2k+1k+1有利?

思路

XnX_nXn表示前nnn局甲赢的局数,则X∼B(n,p)\begin{aligned}&X \sim B(n,p)\\\end{aligned}XB(n,p),令wkw_kwk表示2k−12k-12k1局中最终甲赢的概率.
wk=P(X2k−1≥k)w_{k}=P\left(X_{2 k-1} \geq k\right)wk=P(X2k1k).令q=1−pq=1-pq=1p
由全概率公式
wk+1=P(X2k+1≥k+1)=∑i=02k−1P(X2k−1=i)P(X2k+1≥k+1∣X2k−1=i)\begin{aligned} w_{k+1} &=P\left(X_{2 k+1} \geq k+1\right) \\ &=\sum_{i=0}^{2 k-1} P\left(X_{2 k-1}=i\right) P\left(X_{2 k+1} \geq k+1 | X_{2 k-1}=i\right) \end{aligned}wk+1=P(X2k+1k+1)=i=02k1P(X2k1=i)P(X2k+1k+1X2k1=i)
后面的条件概率如何计算?P(X2k+1≥k+1∣X2k−1=i)={0;i≤k−2p2;i=k−11−q2;i=k1;i≥k+1wk+1=p2P(X2k−1=k−1)+(1−q2)P(X2k−1=k)+P(X2k−1≥k+1)=wk+p2P(X2k−1=k−1)−q2P(X2k−1=k)=wk+p2C2k−1k−1pk−1qk−q2C2k−1kpkqk−1=wk+C2k−1k−1pkqk(p−q)>wk\begin{array}{l} P\left(X_{2 k+1} \geq k+1 | X_{2 k-1}=i\right)=\left\{\begin{array}{l} 0 ; \quad i \leq k-2 \\ p^{2} ; \quad i=k-1 \\ 1-q^{2} ; \quad i=k \\ 1 ; \quad i \geq k+1 \end{array}\right. \\ \begin{aligned} w_{k+1} &=p^{2} P\left(X_{2 k-1}=k-1\right)+\left(1-q^{2}\right) P\left(X_{2 k-1}=k\right) \\ &+P\left(X_{2 k-1} \geq k+1\right) \\ &=w_{k}+p^{2} P\left(X_{2 k-1}=k-1\right)-q^{2} P\left(X_{2 k-1}=k\right) \\ &=w_{k}+p^{2} C_{2 k-1}^{k-1} p^{k-1} q^{k}-q^{2} C_{2 k-1}^{k} p^{k} q^{k-1} \\ &=w_{k}+C_{2 k-1}^{k-1} p^{k} q^{k}(p-q)>w_{k} \end{aligned} \end{array}P(X2k+1k+1X2k1=i)=0;ik2p2;i=k11q2;i=k1;ik+1wk+1=p2P(X2k1=k1)+(1q2)P(X2k1=k)+P(X2k1k+1)=wk+p2P(X2k1=k1)q2P(X2k1=k)=wk+p2C2k1k1pk1qkq2C2k1kpkqk1=wk+C2k1k1pkqk(pq)>wk

答案

对甲来说2k+1局k+1胜制有利.对甲来说2k+ 1局k + 1胜制有利.2k+1k+1.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值