例一·抛掷骰子
将一颗骰子抛掷两次,以XXX表示两次中得到的小的点数,试求XXX的分布律.
思路
以Y1,Y2Y_1,Y_2Y1,Y2表示第一次、第二次投掷时骰子出现的点数,样本空间就可以表示为S={(y1,y2)∣y1=1,2,...,6;y2=1,2,...6}S=\{(y_1,y_2)|y_1=1,2,...,6;y_2=1,2,...6\}S={(y1,y2)∣y1=1,2,...,6;y2=1,2,...6}共有6×6=366×6=366×6=36个样本点.
X=min{Y1,Y2}X=min\{Y_1,Y_2\}X=min{Y1,Y2}所有可能取值为1,2,3,4,5,61,2,3,4,5,61,2,3,4,5,6,事件{X=k}(k=1,2,3,4,5,6)\{X=k\}(k=1,2,3,4,5,6){X=k}(k=1,2,3,4,5,6)发生不外乎以下三种情况:
(1)Y1=k且Y2=k+1,k+2,...6(共有6−k个点);(1)Y_1=k且Y_2=k+1,k+2,...6(共有6-k个点);(1)Y1=k且Y2=k+1,k+2,...6(共有6−k个点);
(2)Y2=k且Y1=k+1,k+2,...6(共有6−k个点);(2)Y_2=k且Y_1=k+1,k+2,...6(共有6-k个点);(2)Y2=k且Y1=k+1,k+2,...6(共有6−k个点);
(3)Y1=k且Y2=k(共有1点);(3)Y_1=k且Y_2=k(共有1点);(3)Y1=k且Y2=k(共有1点);
因而事件共包含(6−k)+(6−k)+1=13−2k(6-k)+(6-k)+1=13-2k(6−k)+(6−k)+1=13−2k个样本点.
答案
P{X=k}=13−2k36,k=1,2,3,4,5,6P\{X=k\}=\frac{13-2k}{36},k=1,2,3,4,5,6P{X=k}=3613−2k,k=1,2,3,4,5,6
例二·保险赔偿
保险公司在一天内承保了5000张相同年龄.为期一年的寿险保单.每人一份.在合同有效期内若投保人死亡,则公司需赔付3万元.设在一年内,该年龄段的死亡率为0.0015,且各投保人是否死亡相互独立.求该公司对于这批投保人的赔付总额不超过30万元的概率(利用泊松定理计算).
思路
读题“赔付总额不超过30万元”即在投保期内投保人死亡的人数不超过30/3=1030/3=1030/3=10人,设这批投保人在一年内死亡人数为XXX,则由“各投保人是否死亡相互独立”知X∼b(5000,0.0015)\begin{aligned}&X \sim b(5000,0.0015)\\\end{aligned}X∼b(5000,0.0015)从而所求的概率就为P{X≤10}=∑k=010C5000k(0.0015)k(1−0.0015)5000−k\begin{array}{l}
P\{X \leq 10\}=\sum_{k=0}^{10} C_{5000}^{k}(0.0015)^{k}(1-0.0015)^{5000-k} \\\end{array}P{X≤10}=∑k=010C5000k(0.0015)k(1−0.0015)5000−k
若用泊松近似可以认为X∼π(λ)X \sim \pi(\lambda)X∼π(λ)(λ=np=5000×0.0015=7.5)(\lambda=np=5000×0.0015=7.5)(λ=np=5000×0.0015=7.5),于是P{X≤10}≈∑k=0107.5ke−7.5k!\begin{array}{l}P\{X \leq 10\} \approx \sum_{k=0}^{10} \frac{7.5^{k} e^{-7.5}}{k !}
\end{array}P{X≤10}≈∑k=010k!7.5ke−7.5
答案
查表算得P{X≤10}≈0.8622查表算得P\{X \leq 10\} \approx 0.8622查表算得P{X≤10}≈0.8622
例三·规则的选择
甲和乙比赛,甲的实力更强一点每一局甲赢的概率为p,这里0.5<p<1.0.5<p<1.0.5<p<1.设各局胜负相互独立设kkk是一正整数.问:对甲而言,2k−1局k胜制2k- 1局k胜制2k−1局k胜制有利,还是2k+1局k+1胜制2k+ 1局k + 1胜制2k+1局k+1胜制有利?
思路
令XnX_nXn表示前nnn局甲赢的局数,则X∼B(n,p)\begin{aligned}&X \sim B(n,p)\\\end{aligned}X∼B(n,p),令wkw_kwk表示2k−12k-12k−1局中最终甲赢的概率.
则wk=P(X2k−1≥k)w_{k}=P\left(X_{2 k-1} \geq k\right)wk=P(X2k−1≥k).令q=1−pq=1-pq=1−p
由全概率公式
wk+1=P(X2k+1≥k+1)=∑i=02k−1P(X2k−1=i)P(X2k+1≥k+1∣X2k−1=i)\begin{aligned}
w_{k+1} &=P\left(X_{2 k+1} \geq k+1\right) \\
&=\sum_{i=0}^{2 k-1} P\left(X_{2 k-1}=i\right) P\left(X_{2 k+1} \geq k+1 | X_{2 k-1}=i\right)
\end{aligned}wk+1=P(X2k+1≥k+1)=i=0∑2k−1P(X2k−1=i)P(X2k+1≥k+1∣X2k−1=i)
后面的条件概率如何计算?P(X2k+1≥k+1∣X2k−1=i)={0;i≤k−2p2;i=k−11−q2;i=k1;i≥k+1wk+1=p2P(X2k−1=k−1)+(1−q2)P(X2k−1=k)+P(X2k−1≥k+1)=wk+p2P(X2k−1=k−1)−q2P(X2k−1=k)=wk+p2C2k−1k−1pk−1qk−q2C2k−1kpkqk−1=wk+C2k−1k−1pkqk(p−q)>wk\begin{array}{l}
P\left(X_{2 k+1} \geq k+1 | X_{2 k-1}=i\right)=\left\{\begin{array}{l}
0 ; \quad i \leq k-2 \\
p^{2} ; \quad i=k-1 \\
1-q^{2} ; \quad i=k \\
1 ; \quad i \geq k+1
\end{array}\right. \\
\begin{aligned}
w_{k+1} &=p^{2} P\left(X_{2 k-1}=k-1\right)+\left(1-q^{2}\right) P\left(X_{2 k-1}=k\right) \\
&+P\left(X_{2 k-1} \geq k+1\right) \\
&=w_{k}+p^{2} P\left(X_{2 k-1}=k-1\right)-q^{2} P\left(X_{2 k-1}=k\right) \\
&=w_{k}+p^{2} C_{2 k-1}^{k-1} p^{k-1} q^{k}-q^{2} C_{2 k-1}^{k} p^{k} q^{k-1} \\
&=w_{k}+C_{2 k-1}^{k-1} p^{k} q^{k}(p-q)>w_{k}
\end{aligned}
\end{array}P(X2k+1≥k+1∣X2k−1=i)=⎩⎪⎪⎨⎪⎪⎧0;i≤k−2p2;i=k−11−q2;i=k1;i≥k+1wk+1=p2P(X2k−1=k−1)+(1−q2)P(X2k−1=k)+P(X2k−1≥k+1)=wk+p2P(X2k−1=k−1)−q2P(X2k−1=k)=wk+p2C2k−1k−1pk−1qk−q2C2k−1kpkqk−1=wk+C2k−1k−1pkqk(p−q)>wk
答案
对甲来说2k+1局k+1胜制有利.对甲来说2k+ 1局k + 1胜制有利.对甲来说2k+1局k+1胜制有利.