1.条件分布律
设(X,Y)(X,Y)(X,Y)是二维离散型随机变量,对于固定的jjj,若P{Y=yj}>0,P\{Y=y_{j}\}>0,P{Y=yj}>0,则称
P{X=xi∣Y=yj}=P{X=xi,Y=yj}P{Y=yj}=pijp.j,i=1,2,…P\{X=x_{i}|Y=y_{j}\}=\frac{P\{X=x_{i},Y=y_{j}\}}{P\{Y=y_{j}\}}=\frac{p_{ij}}{p_{.j}},i=1,2,\dotsP{X=xi∣Y=yj}=P{Y=yj}P{X=xi,Y=yj}=p.jpij,i=1,2,…
为在Y=yjY=y_jY=yj条件下随机变量XXX的条件分布律.
同样,对于固定的iii,若P{X=xi}>0,P\{X=x_{i}\}>0,P{X=xi}>0,则称
P{Y=yj∣X=xi}=P{X=xi,Y=yj}P{X=xi}=pijpi.,j=1,2,…P\{Y=y_{j}|X=x_{i}\}=\frac{P\{X=x_{i},Y=y_{j}\}}{P\{X=x_{i}\}}=\frac{p_{ij}}{p_{i.}},j=1,2,\dotsP{Y=yj∣X=xi}=P{X=xi}P{X=xi,Y=yj}=pi.pij,j=1,2,…
为在X=xiX=x_iX=xi条件下随机变量Y的条件分布律.
2.条件概率密度
设二维随机变量(X,Y)(X,Y)(X,Y)的概率密度为f(x,y),(X,Y)f(x,y),(X,Y)f(x,y),(X,Y)关于YYY的边缘概率密度为fY(y).f_Y(y).fY(y).若对于固定的Y,fY(y)>0,Y,f_Y(y)>0,Y,fY(y)>0,则称f(x,y)fY(y)\frac{f(x,y)}{f_Y(y)}fY(y)f(x,y)为在Y=yY=yY=y的条件下XXX的条件概率密度,记为
fX∣Y(x∣y)=f(x,y)fY(y).f_{X|Y}(x|y)=\frac{f(x,y)}{f_Y(y)}.fX∣Y(x∣y)=fY(y)f(x,y).
称∫−∞xfX∣Y(x∣y)dx=∫−∞xf(x,y)fY(y)dx\int_{-\infty}^{x}f_{X|Y}(x|y)dx=\int_{-\infty}^{x}\frac{f(x,y)}{f_Y(y)}dx∫−∞xfX∣Y(x∣y)dx=∫−∞xfY(y)f(x,y)dx为Y=yY=yY=y的条件下XXX的条件分布函数,记为P{X≤x∣Y=y}P\{X \leq x|Y=y\}P{X≤x∣Y=y}或FX∣Y(x∣y).F_{X|Y}(x|y).FX∣Y(x∣y).
类似地,可以定义fY∣X(y∣x)=f(x,y)fX(x)f_{Y|X}(y|x)=\frac{f(x,y)}{f_X(x)}fY∣X(y∣x)=fX(x)f(x,y)和FY∣X(y∣x)=∫−∞yf(x,y)fX(x).F_{Y|X}(y|x)=\int_{-\infty}^{y}\frac{f(x,y)}{f_X(x)}.FY∣X(y∣x)=∫−∞yfX(x)f(x,y).
3.相互独立的随机变量
设F(x,y)F(x,y)F(x,y)及FX(x),FY(y)F_X(x),F_Y(y)FX(x),FY(y)分别是二维随机变量(X,Y)(X,Y)(X,Y)的分布函数及边缘分布函数.若对于所有x,yx,yx,y有
P{X≤x,Y≤y}=P{X≤x}P{Y≤y},即F(x,y)=FX(x)FY(y),P\{X \leq x,Y \leq y\}=P\{X \leq x\}P\{Y \leq y\},\\
即F(x,y)=F_X(x)F_Y(y),P{X≤x,Y≤y}=P{X≤x}P{Y≤y},即F(x,y)=FX(x)FY(y),
则称随机变量XXX和YYY是相互独立的.
4.结论
二维正态随机变量(X,Y)(X,Y)(X,Y)的概率密度为
f(x,y)=12πσ1σ21−ρ2exp{−12(1−ρ2)[(x−μ1)2σ12−2ρ(x−μ1)(y−μ2)σ1σ2+(y−μ2)2σ22]}f(x, y)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left\{\frac{-1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(x-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-2 \rho \frac{\left(x-\mu_{1}\right)\left(y-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(y-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right]\right\}f(x,y)=2πσ1σ21−ρ21exp{2(1−ρ2)−1[σ12(x−μ1)2−2ρσ1σ2(x−μ1)(y−μ2)+σ22(y−μ2)2]}
对于二维正态随机变量(X,Y),X(X,Y),X(X,Y),X和YYY相互独立的充要条件是参数ρ=0.\rho=0.ρ=0.
5.定理
设(X1,X2,…,Xm)(X_1,X_2,\dots,X_m)(X1,X2,…,Xm)和(Y1,Y2,…,Yn)(Y_1,Y_2,\dots,Y_n)(Y1,Y2,…,Yn)相互独立,则Xi(i=1,2,…,m)X_i(i=1,2,\dots,m)Xi(i=1,2,…,m)和Yj(j=1,2,…,n)Y_j(j=1,2,\dots,n)Yj(j=1,2,…,n)相互独立.又若h,gh,gh,g是连续函数,则h(X1,X2,…,Xm)h(X_1,X_2,\dots,X_m)h(X1,X2,…,Xm)和g(Y1,Y2,…,Yn)g(Y_1,Y_2,\dots,Y_n)g(Y1,Y2,…,Yn)相互独立.
6.Z=X+Y的分布
设(X,Y)(X,Y)(X,Y)是二维连续型随机变量,它具有概率密度f(x,y).f(x,y).f(x,y).则Z=X+YZ=X+YZ=X+Y仍为连续型随机变量,其概率密度为
fX+Y(z)=∫−∞∞f(z−y,y)dy,或fX+Y(z)=∫−∞∞f(x,z−x)dx.f_{X+Y}(z)=\int_{-\infty}^{\infty}f(z-y,y)dy,\\
或 f_{X+Y}(z)=\int_{-\infty}^{\infty}f(x,z-x)dx.fX+Y(z)=∫−∞∞f(z−y,y)dy,或fX+Y(z)=∫−∞∞f(x,z−x)dx.
又若XXX和YYY相互独立,设(X,Y)(X,Y)(X,Y)关于X,YX,YX,Y的边缘密度分别为fX(x),fY(y),f_X(x),f_Y(y),fX(x),fY(y),则
fX+Y(z)=∫−∞∞fX(z−y)fY(y)dy,fX+Y(z)=∫−∞∞fX(x)fY(z−x)dx.f_{X+Y}(z)=\int_{-\infty}^{\infty}f_X(z-y)f_Y(y)dy, \\
f_{X+Y}(z)=\int_{-\infty}^{\infty}f_X(x)f_Y(z-x)dx.fX+Y(z)=∫−∞∞fX(z−y)fY(y)dy,fX+Y(z)=∫−∞∞fX(x)fY(z−x)dx.
这两个公式记为fXf_XfX和fYf_YfY的卷积公式,记为fX∗fY,f_X*f_Y,fX∗fY,即
fX∗fY=∫−∞∞fX(z−y)fY(y)dy=∫−∞∞fX(x)fY(z−x)dx.f_X*f_Y=\int_{-\infty}^{\infty}f_X(z-y)f_Y(y)dy=\int_{-\infty}^{\infty}f_X(x)f_Y(z-x)dx.fX∗fY=∫−∞∞fX(z−y)fY(y)dy=∫−∞∞fX(x)fY(z−x)dx.
Z=X+Y的分布函数为Z=X+Y的分布函数为Z=X+Y的分布函数为
FZ(z)=∫−∞∞[∫−∞zf(u−y,y)du]dy=∫−∞z[∫−∞∞f(u−y,y)dy]du.F_Z(z)=\int_{-\infty}^{\infty}[\int_{-\infty}^{z}f(u-y,y)du]dy=\int_{-\infty}^{z}[\int_{-\infty}^{\infty}f(u-y,y)dy]du.FZ(z)=∫−∞∞[∫−∞zf(u−y,y)du]dy=∫−∞z[∫−∞∞f(u−y,y)dy]du.
7.应用
有限个相互独立的正态随机变量的线性组合仍然服从正态分布.即
Z=X1+X2+⋯+Xn∼N(μ1+μ2+⋯+μm,σ12+σ22+⋯+σn2).Z=X_1+X_2+\dots+X_n \sim N(\mu_1+\mu_2+\dots+\mu_m,{\sigma_1}^2+{\sigma_2}^2+\dots+{\sigma_n}^2).Z=X1+X2+⋯+Xn∼N(μ1+μ2+⋯+μm,σ12+σ22+⋯+σn2).
8.卡方分布(Γ\GammaΓ)分布
若nnn个相互独立的随机变量ξ₁,ξ₂,...,ξn,ξ₁,ξ₂,...,ξn ,ξ₁,ξ₂,...,ξn,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution).
设随机变量X,YX,YX,Y相互独立,且分别服从参数为α,θ,;β,θ\alpha,\theta,;\beta,\thetaα,θ,;β,θ的Γ\GammaΓ分布(分别记作X∼Γ(α,θ),Y∼Γ(β,θ)).X,YX \sim \Gamma(\alpha,\theta),Y \sim \Gamma(\beta,\theta)).X,YX∼Γ(α,θ),Y∼Γ(β,θ)).X,Y的概率密度分别为
fX(x)={1θαΓ(α)xα−1e−xθ,x>0,α>0,θ>0.0,其他,fY(y)={1θβΓ(β)xβ−1e−yθ,x>0,β>0,θ>0.0,其他,f_X(x)= \left\{\begin{aligned}
&\frac{1}{\theta^\alpha\Gamma(\alpha)}x^{\alpha-1}e^{-\frac{x}{\theta}}, x>0,\alpha>0,\theta>0.\\
&0,其他,\\
\end{aligned}\right.\\
f_Y(y)= \left\{\begin{aligned}
&\frac{1}{\theta^\beta\Gamma(\beta)}x^{\beta-1}e^{-\frac{y}{\theta}}, x>0,\beta>0,\theta>0.\\
&0,其他,\\
\end{aligned}\right.fX(x)=⎩⎪⎨⎪⎧θαΓ(α)1xα−1e−θx,x>0,α>0,θ>0.0,其他,fY(y)=⎩⎪⎨⎪⎧θβΓ(β)1xβ−1e−θy,x>0,β>0,θ>0.0,其他,
且有X+Y∼Γ(α+β,θ).X+Y \sim \Gamma(\alpha+\beta,\theta).X+Y∼Γ(α+β,θ).(可加性)
9.Z=YXZ=\frac{Y}{X}Z=XY的分布 Z=XYZ=XYZ=XY的分布
设(X,Y)(X,Y)(X,Y)是二维连续型随机变量,它具有概率密度f(x,y),f(x,y),f(x,y),则Z=YX,Z=XYZ=\frac{Y}{X},Z=XYZ=XY,Z=XY仍为连续型随机变量,其概率密度分别为
fY/X(z)=∫−∞∞∣x∣f(x,xz)dx,fXY(z)=∫−∞∞1∣x∣f(x,zx)dx.f_{Y/X}(z)=\int_{-\infty}^{\infty}|x|f(x,xz)dx,\\
f_{XY}(z)=\int_{-\infty}{\infty}\frac{1}{|x|}f(x,\frac{z}{x})dx.fY/X(z)=∫−∞∞∣x∣f(x,xz)dx,fXY(z)=∫−∞∞∣x∣1f(x,xz)dx.
又若XXX和YYY相互独立.设(X,Y)(X,Y)(X,Y)关于X,YX,YX,Y的边缘密度分别为fX(x),fY(y)f_X(x),f_Y(y)fX(x),fY(y),则
fY/X(z)=∫−∞∞∣x∣fX(x)fY(xz)dx.fXY(z)=∫−∞∞1∣x∣fX(x)fY(zx)dx.f_{Y/X}(z)=\int_{-\infty}^{\infty}|x|f_X(x)f_Y(xz)dx.\\
f_{XY}(z)=\int_{-\infty}^{\infty}\frac{1}{|x|}f_X(x)f_Y(\frac{z}{x})dx.fY/X(z)=∫−∞∞∣x∣fX(x)fY(xz)dx.fXY(z)=∫−∞∞∣x∣1fX(x)fY(xz)dx.
10.M=max{X,Y}及N=min{X,Y}的分布
M=max{X,Y}M=max\{X,Y\}M=max{X,Y}的分布函数为
Fmax(z)=Fx(z)FY(z).F_{max}(z)=F_x(z)F_Y(z).Fmax(z)=Fx(z)FY(z).
M=max{X1,X2,…,Xn}M=max\{X_1,X_2,\dots,X_n\}M=max{X1,X2,…,Xn}的分布函数为
Fmax(z)=FX1(z)FX2(z)…FXn(z).F_{max}(z)=F_{X_1}(z)F_{X_2}(z)\dots F_{X_n}(z).Fmax(z)=FX1(z)FX2(z)…FXn(z).
N=min{X,Y}N=min\{X,Y\}N=min{X,Y}的分布函数为
Fmin(z)=1−[1−FX(z)][1−FY(z)].F_{min}(z)=1-[1-F_X(z)][1-F_Y(z)].Fmin(z)=1−[1−FX(z)][1−FY(z)].
N=min{X1,X2,…,Xn}N=min\{X_1,X_2,\dots,X_n\}N=min{X1,X2,…,Xn}的分布函数为
Fmin(z)=1−[1−FX1(z)][1−FX2(z)]…[1−FXn(z)].F_{min}(z)=1-[1-F_{X_1}(z)][1-F_{X_2}(z)] \dots[1-F_{X_n}(z)].Fmin(z)=1−[1−FX1(z)][1−FX2(z)]…[1−FXn(z)].