随机变量的数字特征(知识点部分)

1.数学期望

设离散型随机变量XXX的分布律为
P{X=xk}=pk,k=1,2,… .P\{X=x_k\}=p_k,k=1,2,\dots.P{X=xk}=pk,k=1,2,.
若级数
∑k=1∞xkpk\sum_{k=1}^{\infty}x_kp_kk=1xkpk
绝对收敛,则称级数∑k=1∞xkpk\sum_{k=1}^{\infty}x_kp_kk=1xkpk的和为随机变量XXX数学期望,记为E(X).E(X).E(X).
E(X)=∑k=1∞xkpk.E(X)=\sum_{k=1}^{\infty}x_kp_k.E(X)=k=1xkpk.
设连续型随机变量XXX的概率密度为f(x),f(x),f(x),若积分
∫−∞∞xf(x)dx\int_{-\infty}^{\infty}xf(x)dxxf(x)dx
绝对收敛,则称积分∫−∞∞xf(x)dx\int_{-\infty}^{\infty}xf(x)dxxf(x)dx的值为随机变量XXX数学期望,记为E(X).E(X).E(X).
E(X)=∫−∞∞xf(x)dxE(X)=\int_{-\infty}^{\infty}xf(x)dxE(X)=xf(x)dx
数学期望简称期望,又称为均值.

2.定理

YYY是随机变量XXX的函数:Y=g(X)(g是连续函数).:Y=g(X)(g是连续函数).:Y=g(X)(g).
(i)如果XXX是离散型随机变量,它的分布律为P{X=xk}=pk,k=1,2,…P\{X=x_k\}=p_k,k=1,2,\dotsP{X=xk}=pk,k=1,2,
∑k=1∞g(xk)pk\sum_{k=1}^{\infty}g(x_k)p_kk=1g(xk)pk
绝对收敛,则有
E(Y)=E[g(X)]=∑k=1∞g(xk)pk.E(Y)=E[g(X)]=\sum_{k=1}^{\infty}g(x_k)p_k.E(Y)=E[g(X)]=k=1g(xk)pk.
(ii)如果XXX是连续型随机变量,它的概率密度为f(x),f(x),f(x),
∫−∞∞g(x)f(x)dx\int_{-\infty}^{\infty}g(x)f(x)dxg(x)f(x)dx
绝对收敛,则有
E(Y)=E[g(X)]=∫−∞∞g(x)f(x)dx.E(Y)=E[g(X)]=\int_{-\infty}^{\infty}g(x)f(x)dx.E(Y)=E[g(X)]=g(x)f(x)dx.

3.方差

XXX是一个随机变量,若E{[X−E(X)]2}E\{[X-E(X)]^2\}E{[XE(X)]2}存在,则称E{[X−E(X)]2}E\{[X-E(X)]^2\}E{[XE(X)]2}XXX方差,记为D(x)D(x)D(x)Var(X),Var(X),Var(X),
D(x)=Var(X)=E{[X−E(X)]2}.D(x)=Var(X)=E\{[X-E(X)]^2\}.D(x)=Var(X)=E{[XE(X)]2}.
在应用上还引入量D(X),\sqrt{D(X)},D(X),记为σ(X),\sigma(X),σ(X),成为标准差均方差.
对于离散型随机变量,有
D(X)=∑k=1∞[xk−E(X)]2pkD(X)=\sum_{k=1}^{\infty}[x_k-E(X)]^2p_kD(X)=k=1[xkE(X)]2pk
其中P{X=xk}=pk,k=1,2,…P\{X=x_k\}=p_k,k=1,2,\dotsP{X=xk}=pk,k=1,2,XXX的分布律.
对于连续型随机变量,有
D(X)=∫−∞∞[x−E(X)]2f(x)dxD(X)=\int_{-\infty}^{\infty}[x-E(X)]^2f(x)dxD(X)=[xE(X)]2f(x)dx
其中f(x)f(x)f(x)XXX的概率密度.

4.方差的重要性质

(1)设CCC是常数,则D(C)=0.D(C)=0.D(C)=0.
(2)D(CX)=C2D(X),D(X+C)=D(X).D(CX)=C^2D(X),D(X+C)=D(X).D(CX)=C2D(X),D(X+C)=D(X).
(3)D(X+Y)=D(X)+D(Y)+2E{(X−E(X))(Y−E(Y))}.D(X+Y)=D(X)+D(Y)+2E\{(X-E(X))(Y-E(Y))\}.D(X+Y)=D(X)+D(Y)+2E{(XE(X))(YE(Y))}.
(4)D(X)=0D(X)=0D(X)=0充要条件P{X=E(X)}=1.P\{X=E(X)\}=1.P{X=E(X)}=1.

5.几个常见分布的数学期望和方差

(1)若X∼π(λ),X\sim \pi(\lambda),Xπ(λ),
E(X)=λD(X)=λE(X)=\lambda\\ D(X)=\lambdaE(X)=λD(X)=λ
(2)若X∼U(a,b),X\sim U(a,b),XU(a,b),
E(X)=a+b2D(X)=(b−a)212E(X)=\frac{a+b}{2}\\ D(X)=\frac{(b-a)^2}{12}E(X)=2a+bD(X)=12(ba)2
(3)若XXX具有(0−1)(0-1)(01)分布,其分布律为
P{X=1}=p,P{X=0}=1−pP\{X=1\}=p,P\{X=0\}=1-pP{X=1}=p,P{X=0}=1p
E(X)=pD(X)=p(1−p)E(X)=p\\ D(X)=p(1-p)E(X)=pD(X)=p(1p)
(4)若随机变量XXX服从指数分布,其概率密度为
f(x)={1θe−xθ,x>0,0,x≤0.f(x)=\left\{\begin{aligned} &\frac{1}{\theta}e^{-\frac{x}{\theta}},x>0,\\ &0,x\leq 0.\end{aligned}\right.f(x)=θ1eθx,x>0,0,x0.
其中θ>0,\theta>0,θ>0,
E(X)=θD(X)=θ2E(X)=\theta\\ D(X)=\theta^2E(X)=θD(X)=θ2
(5)若X∼b(n,p),X\sim b(n,p),Xb(n,p),
E(X)=npD(X)=np(1−p)E(X)=np\\ D(X)=np(1-p)E(X)=npD(X)=np(1p)
(6)若X∼N(μ,σ2),X\sim N(\mu,\sigma^2),XN(μ,σ2),
E(X)=μD(X)=σ2E(X)=\mu\\ D(X)=\sigma^2E(X)=μD(X)=σ2

6.切比雪夫不等式

设随机变量XXX具有数学期望E(X)=μ,E(X)=\mu,E(X)=μ,方差D(X)=σ2,D(X)=\sigma^2,D(X)=σ2,则对于任意正数ε,\varepsilon,ε,不等式
P{∣X−μ∣≥ε}≤σ2ε2P\{|X-\mu|\ge \varepsilon\}\leq \frac{\sigma^2}{\varepsilon^2}P{Xμε}ε2σ2
成立.切比雪夫不等式也可以写成
P{∣X−μ∣<ε}≥1−σ2ε2P\{|X-\mu|<\varepsilon\}\ge 1-\frac{\sigma^2}{\varepsilon^2}P{Xμ<ε}1ε2σ2

7.协方差及相关系数

E{[X−E(X)][Y−E(Y)]E\{[X-E(X)][Y-E(Y)]E{[XE(X)][YE(Y)]称为随机变量XXXYYY协方差,记为Cov(X,Y),Cov(X,Y),Cov(X,Y),
Cov(X,Y)=E{[X−E(X)][Y−E(Y)]Cov(X,Y)=E\{[X-E(X)][Y-E(Y)]Cov(X,Y)=E{[XE(X)][YE(Y)]

ρXY=Cov(X,Y)D(X)D(Y)\rho_{XY}=\frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}ρXY=D(X)D(Y)Cov(X,Y)
称为随机变量XXXYYY相关系数.

8.结论

二维正态随机变量(X,Y)(X,Y)(X,Y)的概率密度中的参数ρ\rhoρ就是XXXYYY的相关系数,XXXYYY相互独立的充要条件
ρ=0\rho=0ρ=0

9.矩和协方差矩阵

XXXYYY是随机变量,若
E(Xk),k=1,2,…E(X^k),k=1,2,\dotsE(Xk),k=1,2,
存在,则称它为XXXkkk阶原点矩,简称kkk阶矩.

E{[X−E(X)]k},k=1,2,…E\{[X-E(X)]^k\},k=1,2,\dotsE{[XE(X)]k},k=1,2,
存在,则称它为XXXkkk阶中心矩.

E(XkYl),k,l=1,2…E(X^kY^l),k,l=1,2\dotsE(XkYl),k,l=1,2
存在,则称它为X和YX和YXYk+lk+lk+l阶混合矩.
E{[X−E(X)]k[Y−E(Y)]l}E\{[X-E(X)]^k[Y-E(Y)]^l\}E{[XE(X)]k[YE(Y)]l}
存在,则称它为X和YX和YXYk+lk+lk+l阶混合中心矩.
nnn阶随机变量(X1,X2,…,Xn)(X_1,X_2,\dots,X_n)(X1,X2,,Xn)的二阶混合中心矩
cij=Cov(Xi,Xj)=E{[Xi−E(Xi)][Xj−E(Xj)]},i,j=1,2,…,nc_{ij}=Cov(X_i,X_j)=E\{[X_i-E(X_i)][X_j-E(X_j)]\},i,j=1,2,\dots,ncij=Cov(Xi,Xj)=E{[XiE(Xi)][XjE(Xj)]},i,j=1,2,,n
都存在,则称矩阵
C=(c11c12…c1nc21c22…c2n⋮⋮⋮cn1cn2…cnn)C=\left(\begin{array}{c} c_{11}&c_{12}&\dots&c_{1n}\\ c_{21}&c_{22}&\dots&c_{2n}\\ \vdots&\vdots& &\vdots\\ c_{n1}&c_{n2}&\dots&c_{nn}\\ \end{array}\right)C=c11c21cn1c12c22cn2c1nc2ncnn
nnn维随机变量(X1,X2,…,Xn)(X_1,X_2,\dots,X_n)(X1,X2,,Xn)协方差矩阵.
引入列矩阵
X=(x1x2⋮xn)和μ=(μ1μ2⋮μn)=(E(X1)E(X2)⋮E(Xn)).X=\left(\begin{array}{c} x_1\\ x_2\\ \vdots\\ x_n\\ \end{array}\right)和\mu=\left(\begin{array}{c} \mu_1\\ \mu_2\\ \vdots\\ \mu_n\\ \end{array}\right)=\left(\begin{array}{c} E(X_1)\\ E(X_2)\\ \vdots\\ E(X_n)\\ \end{array}\right).X=x1x2xnμ=μ1μ2μn=E(X1)E(X2)E(Xn).
nnn维正态随机变量(X1,X2,…,Xn)(X_1,X_2,\dots,X_n)(X1,X2,,Xn)的概率密度为
f(x1,x2,…,xn)=1(2π)n2(detC)12exp{−12(X−μ)TC−1(X−μ)}f(x_1,x_2,\dots,x_n)=\frac{1}{(2\pi)^{\frac{n}{2}}(detC)^{\frac{1}{2}}}exp\{-\frac{1}{2}(X-\mu)^TC^{-1}(X-\mu)\}f(x1,x2,,xn)=(2π)2n(detC)211exp{21(Xμ)TC1(Xμ)}
其中CCC(X1,X2,…,Xn)(X_1,X_2,\dots,X_n)(X1,X2,,Xn)协方差矩阵.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值