小白月初赛36-D哥三好(DP)

该博客探讨了一种高效的方法来解决涉及到三个人分别有特定钱数的请客吃饭问题。通过将钱数除以最大公约数150进行简化,采用三维动态规划(DP)进行状态转移,大大降低了时间复杂度。博主提供了C++代码实现,并展示了如何通过DP数组计算在给定条件下能请客的最大次数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意
在这里插入图片描述
思路
我们刚开始看到a,b,c的钱数都是小于等于1e4,不管是时间还是空间都没办法处理,但是我们发现请客的钱数只会是300,450,750,他们的最大公约数是150,也就是说他们都是150的倍数,我们可以直接除去150,这样的时间复杂度就可以直接三维DP来转移了。时间复杂度是o(a/150∗b/150∗c/150a/150*b/150*c/150a/150b/150c/150
dp[i][j][k]dp[i][j][k]dp[i][j][k]表示第一个人有i块钱,第二个人j块钱,第三个人有k块钱的能请客的最大次数。
代码

#include <bits/stdc++.h>
#define ll long long
#define fi first
#define se second
#define pb push_back
#define me memset
const int N = 1e6+10;
const int MOD = 1e9+7;
const int INF = 0x3f3f3f3f;
using namespace std;
typedef pair<int,int> PII;
typedef pair<ll,ll> PLL;
int dp[72][72][72];
signed main()
{
    int a,b,c;
    cin>>a>>b>>c;
    a/=150;
    b/=150;
    c/=150;
    dp[0][0][0]=1;
    for(int i=0;i<=1;++i)
        for(int j=0;j<=1;++j)
            for(int k=0;k<=1;++k)
                dp[i][j][k]=1;
    for(int i=0 ; i<= a; ++i )
        for(int j=0 ; j<= b; ++j )
            for(int k=0 ; k<=c; ++k )
            {
                if(i>=2) dp[i][j][k]=(dp[i][j][k]+dp[i-2][j][k])%MOD;
                if(i>=3) dp[i][j][k]=(dp[i][j][k]+dp[i-3][j][k])%MOD;
                if(i>=5) dp[i][j][k]=(dp[i][j][k]+dp[i-5][j][k])%MOD;
                if(j>=2) dp[i][j][k]=(dp[i][j][k]+dp[i][j-2][k])%MOD;
                if(j>=3) dp[i][j][k]=(dp[i][j][k]+dp[i][j-3][k])%MOD;
                if(j>=5) dp[i][j][k]=(dp[i][j][k]+dp[i][j-5][k])%MOD;
                if(k>=2) dp[i][j][k]=(dp[i][j][k]+dp[i][j][k-2])%MOD;
                if(k>=3) dp[i][j][k]=(dp[i][j][k]+dp[i][j][k-3])%MOD;
                if(k>=5) dp[i][j][k]=(dp[i][j][k]+dp[i][j][k-5])%MOD;
            }
    int ans=dp[a][b][c];
    cout<<ans;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值