基础:
图像分割指的是:根据图像所显示的内容标记特定区域,解决“图像里有什么,在什么位置”的问题。
给分割后图像中的每一类物体添加语义标签,用不同的颜色代表不同类别的物体,即形成了图像的语义分割/图像语义标注/密集预测。
应用:无人驾驶(识别云与车),地理信息系统(识别道路与河流)
超像素:在平常图像处理任务中,处理的最小单位是像素,这就是像素级;而把像素级的图像划分成为多个区域,把区域当成是最基本的处理单元,这就是超像素。
图像硬分割:
每个像素都有准确的所属区域,以二分类为例,每个像素的标签非0即1
图像软分割:
每个像素都有一个“隶属度”,表明该像素属于每一类的概率
基于聚类的分割方法:
聚类分割技术按照样本(像素,包含颜色、亮度、纹理等特征)间的相似性把集合(一张图片)划分为若干子集,每个子集相当于一个类别,划分结果使某种表示聚类质量的准则(与损失函数效果相同,不过越大越好)为最大
通用步骤:1、初始化一个粗糙的聚类
2、迭代至收敛,得到最终结果
K-Means:
初始K个聚类中心,将样本按距离分给每个聚类(遍历所有样本)。对每个簇,以簇内所有样本的均值作为该簇新的聚类中心。迭代直到聚类中心不再变化,或达到设定的迭代次数。
优点:可收敛,每次迭代都向全局最优靠近
缺点:每次迭代都遍历所有样本,计算量大。K-means是基于距离的划分方法,不适合的聚类非凸形状的类簇如: 。
谱聚类:
一种基于图论的聚类方法,将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,子图间距离尽量较远,以达到聚类的目的