文章目录
Toward Fairness Through Fair Multi-Exit Framework for Dermatological Disease Diagnosis
摘要
在医学图像识别领域,公平性逐渐成为至关重要的因素。然而,若不减少偏见,部署不公平的医疗人工智能系统可能会损害弱势群体的利益。在这项研究中,观察到神经网络深层提取的特征通常具有更高的准确性,但随着从更深的层中提取特征,公平性条件会恶化。这一现象激发了研究人员对多出口框架概念的拓展。
与现有工作主要侧重于准确性不同,本文的多出口框架以公平性为导向。内部分类器被训练得更准确和更公平,并具有较高的可扩展性,可适用于大多数现有的公平感知框架。在推理过程中,任何内部分类器对某一实例有高置信度时,均可提前退出。实验结果显示,该框架在两个皮肤病数据集中能够改善公平性条件,优于现有技术水平。
代码地址
方法
Fig. 1. 提出的多出口训练框架示意图。lt 和 ls 分别是与目标属性和敏感属性相关的损失函数。分类器 CLF1 到 CLFn 指的是内部分类器,而 CLFf 指的是原始的最终分类器。