cora数据集可视化
https://towardsdatascience.com/pytorch-geometric-graph-embedding-da71d614c3a
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_cluster import random_walk
from sklearn.linear_model import LogisticRegression
import torch_geometric.transforms as T
from torch_geometric.nn import SAGEConv
from torch_geometric.datasets import Planetoid
#from torch_geometric.data import NeighborSampler as RawNeighborSampler
from torch_geometric.loader import NeighborSampler as RawNeighborSampler
import umap
import matplotlib.pyplot as plt
import seaborn as sns
dataset = 'Cora'
path = './data'
dataset = Planetoid(path, dataset, transform=T.NormalizeFeatures())
data = dataset[0]
##### 原始数据集可视化
embd_x = umap.UMAP().fit_transform(data.x.numpy())
palette = {}
for n, y in enumerate(set(data.y.numpy())):
palette[y] = f'C{n}'
plt.figure(figsize=(10, 10))
sns.scatterplot(x=embd_x.T[0], y=embd_x.T[1], hue=data.y.cpu().numpy(),palette=palette)
plt.legend(bbox_to_anchor=(1,1), loc='upper left')
plt.savefig("umap_embd.png", dpi=120)
结果如下
可以看到直接使用feature数据进行可视化其实看起来是很乱的
GraphSage训练embedding
class NeighborSampler(RawNeighborSampler):
def sample(self, batch):
batch = torch.tensor(batch)
row, col, _ = self.adj_t.coo()
# For each node in `batch`, we sample a direct neighbor (as positive
# example) and a random node (as negative example):
pos_batch = random_walk(row, col, batch, walk_length=1,
coalesced=False)[:, 1]
neg_batch = torch.randint(0, self.adj_t.size(1), (batch.numel(), ),
dtype=torch.long)
batch = torch.cat([batch, pos_batch, neg_batch], dim=0)
return super(NeighborSampler, self).sample(batch)
train_loader = NeighborSampler(data.edge_index, sizes=[10, 10], batch_size=256,
shuffle=True, num_nodes=data.num_nodes)
class SAGE(nn.Module):
def __init__(self, in_channels, hidden_channels, num_layers):
super(SAGE, self).__init__()
self.num_layers = num_layers
self.convs = nn.ModuleList()
for i in range(num_layers):
in_channels = in_channels if i == 0 else hidden_channels
self.convs.append(SAGEConv(in_channels, hidden_channels))
def forward(self, x, adjs):
for i, (edge_index, _, size) in enumerate(adjs):
x_target = x[:size[1]] # Target nodes are always placed first.
x = self.convs[i]((x, x_target), edge_index)
if i != self.num_layers - 1:
x = x.relu()
x = F.dropout(x, p=0.5, training=self.training)
return x
def full_forward(self, x, edge_index):
for i, conv in enumerate(self.convs):
x = conv(x, edge_index)
if i != self.num_layers - 1:
x = x.relu()
x = F.dropout(x, p=0.5, training=self.training)
return x
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = SAGE(data.num_node_features, hidden_channels=64, num_layers=2)
model = model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
x, edge_index = data.x.to(device), data.edge_index.to(device)
def train():
model.train()
total_loss = 0
for batch_size, n_id, adjs in train_loader:
# `adjs` holds a list of `(edge_index, e_id, size)` tuples.
adjs = [adj.to(device) for adj in adjs]
optimizer.zero_grad()
out = model(x[n_id], adjs)
out, pos_out, neg_out = out.split(out.size(0) // 3, dim=0)
pos_loss = F.logsigmoid((out * pos_out).sum(-1)).mean()
neg_loss = F.logsigmoid(-(out * neg_out).sum(-1)).mean()
loss = -pos_loss - neg_loss
loss.backward()
optimizer.step()
total_loss += float(loss) * out.size(0)
return total_loss / data.num_nodes
@torch.no_grad()
def test():
model.eval()
out = model.full_forward(x, edge_index).cpu()
clf = LogisticRegression()
clf.fit(out[data.train_mask], data.y[data.train_mask])
val_acc = clf.score(out[data.val_mask], data.y[data.val_mask])
test_acc = clf.score(out[data.test_mask], data.y[data.test_mask])
return val_acc, test_acc
for epoch in range(1, 51):
loss = train()
val_acc, test_acc = test()
print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}, '
f'Val: {val_acc:.4f}, Test: {test_acc:.4f}')
with torch.no_grad():
model.eval()
out = model.full_forward(x, edge_index).cpu()
palette = {}
for n, y in enumerate(set(data.y.numpy())):
palette[y] = f'C{n}'
embd = umap.UMAP().fit_transform(out.cpu().numpy())
plt.figure(figsize=(10, 10))
sns.scatterplot(x=embd.T[0], y=embd.T[1], hue=data.y.cpu().numpy(), palette=palette)
plt.legend(bbox_to_anchor=(1,1), loc='upper left')
plt.savefig("umap_embd_sage.png", dpi=120)
可以看到这个embedding比直接umap的要好
example 2
参考https://pytorch-geometric.readthedocs.io/en/latest/get_started/introduction.html
from torch_geometric.datasets import Planetoid
import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
dataset = Planetoid(root='./', name='Cora')
class GCN(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = GCNConv(dataset.num_node_features, 16)
self.conv2 = GCNConv(16, dataset.num_classes)
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = self.conv1(x, edge_index)
x = F.relu(x)
x = F.dropout(x, training=self.training)
x = self.conv2(x, edge_index)
return F.log_softmax(x, dim=1)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = GCN().to(device)
data = dataset[0].to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
model.train()
for epoch in range(200):
optimizer.zero_grad()
out = model(data)
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
model.eval()
pred = model(data).argmax(dim=1)
correct = (pred[data.test_mask] == data.y[data.test_mask]).sum()
acc = int(correct) / int(data.test_mask.sum())
print(f'Accuracy: {acc:.4f}')