【学习笔记】【Pytorch】十五、网络模型的保存与读取

文章介绍了Pytorch中两种保存和读取网络模型的方法。保存模型可以是整个模型结构和参数,或者仅保存state_dict。在读取时,需要注意加载模型时需提供相应的模型类定义。还特别提到了加载自定义模型时避免缺少类定义的错误处理方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【学习笔记】【Pytorch】十五、网络模型的保存与读取

一、网络模型的保存

Pytorch提供了两种方式进行保存模型。

import torch
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d

vgg16 = torchvision.models.vgg16(pretrained=False)

# 保存方式1:模型结构+模型参数
torch.save(vgg16, "vgg16_method1.pth")  # 保存模型结构及参数

# 保存方式2:模型参数,保存成字典的形式(官方推荐)
torch.save(vgg16.state_dict(), "vgg16_method2.pth")


# 陷阱1:方式1保存模型,陷阱在加载处
class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()  # 初始化父类属性
        self.model1 = Sequential(
            Conv2d(3, 32, 5, stride=1, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值