给定一个正整数、负整数和 0 组成的 N × M 矩阵,编写代码找出元素总和最大的子矩阵。
返回一个数组 [r1, c1, r2, c2],其中 r1, c1 分别代表子矩阵左上角的行号和列号,r2, c2 分别代表右下角的行号和列号。若有多个满足条件的子矩阵,返回任意一个均可。
注意:本题相对书上原题稍作改动
示例:
输入:
[
[-1,0],
[0,-1]
]
输出:[0,1,0,1]
解释:输入中标粗的元素即为输出所表示的矩阵
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/max-submatrix-lcci
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路
先搞懂一维
整个算法的复杂度是O(n*m *m)(当n为方阵,O(n^3)
)思路:先求出每一列的前缀和,
sum[c][r]代表,
c列的前i行元素之和`。然后枚举二维矩阵的 所有连续行(二重循环)
class Solution {
public:
vector<int> getMaxMatrix(vector<vector<int>>& matrix) {
int r = matrix.size();
int c = matrix[0].size();
int sum[c][r+1];
memset(sum, 0, sizeof(sum));
for(int j=0;j<c;j++){
for(int i=0;i<r;i++){
sum[j][i+1] = sum[j][i] + matrix[i][j];
}
}
//emurate constant rows
vector<int> ans{0, 0, 0, 0};
int sr_, sc_, er_, ec_;
int maxval = INT_MIN;
for(int sr = 0;sr < r;sr++){
for(int er = sr;er < r;er++){
int dp = 0;
for(int cc = 0;cc < c;cc++){
int add = sum[cc][er+1] - sum[cc][sr];
if(dp > 0){
dp += add;
}
else{
sc_ = cc;
dp = add;
}
if(dp > maxval){
maxval = dp;
ans = {sr, sc_, er, cc};
}
}
}
}
return ans;
}
};