【LeetCode】面试题 17.24. 最大子矩阵

该博客讨论了一个算法问题,即如何在一个包含正整数、负整数和0的N×M矩阵中找到元素总和最大的子矩阵。提供了一个解决方案,通过计算每列的前缀和,然后枚举所有连续行来找到最大和的子矩阵。算法的时间复杂度为O(n*m*m)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个正整数、负整数和 0 组成的 N × M 矩阵,编写代码找出元素总和最大的子矩阵。

返回一个数组 [r1, c1, r2, c2],其中 r1, c1 分别代表子矩阵左上角的行号和列号,r2, c2 分别代表右下角的行号和列号。若有多个满足条件的子矩阵,返回任意一个均可。

注意:本题相对书上原题稍作改动

示例:

输入:
[
[-1,0],
[0,-1]
]
输出:[0,1,0,1]
解释:输入中标粗的元素即为输出所表示的矩阵

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/max-submatrix-lcci
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
在这里插入图片描述

思路

先搞懂一维

整个算法的复杂度是O(n*m *m)(当n为方阵,O(n^3)思路:先求出每一列的前缀和,sum[c][r]代表,c列的前i行元素之和`。然后枚举二维矩阵的 所有连续行(二重循环)

class Solution {
public:
    vector<int> getMaxMatrix(vector<vector<int>>& matrix) {
        int r = matrix.size();
        int c = matrix[0].size();
        int sum[c][r+1];
        memset(sum, 0, sizeof(sum));
        for(int j=0;j<c;j++){
            for(int i=0;i<r;i++){
                sum[j][i+1] = sum[j][i] + matrix[i][j];
            }
        }

        //emurate constant rows
        vector<int> ans{0, 0, 0, 0};
        int sr_, sc_, er_, ec_;
        int maxval = INT_MIN;
        for(int sr = 0;sr < r;sr++){
            for(int er = sr;er < r;er++){
                int dp = 0;
                for(int cc = 0;cc < c;cc++){
                    int add = sum[cc][er+1] - sum[cc][sr];
                    if(dp > 0){
                        dp += add;
                    }
                    else{
                        sc_ = cc;
                        dp = add;
                    }

                    if(dp > maxval){
                        maxval = dp;
                        ans = {sr, sc_, er, cc};
                    }
                }


            }
        }
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值