Verilog | 卷积码实现

卷积码是一种重要的差错控制编码,广泛应用在通信系统中,如IS-95、TD-SCDMA等。卷积码利用输入数据的连续性,通过网络图和维特比算法实现高效编码和解码。本文介绍了卷积码的基本原理,包括末尾补零和咬尾两种编码方式,以及简单的Verilog代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、卷积码(convolution code)

卷积码是一种差错控制编码,由P.Elias于1955年发明。因为数据与二进制多项式滑动相关故称卷积码。卷积码在通信系统中应用广泛,如IS-95,TD-SCDMA,WCDMA,IEEE 802.11及卫星等系统中均使用了卷积码。以(n,k,m)或者(n,k,L)来描述卷积码,其中k为每次输入到卷积编码器的bit数,n为每个k元组码字对应的卷积码输出n元组码字,m为编码存储度,也就是卷积编码器的k元组的级数,称m+1= L为编码约束度m称为约束长度。卷积码将k元组输入码元编成n元组输出码元,但k和n通常很小,特别适合以串行形式进行传输,时延小。与分组码不同,卷积码编码生成的n元组元不仅与当前输入的k元组有关,还与前面m-1个输入的k元组有关,编码过程中互相关联的码元个数为n*m。卷积码的纠错性能随m的增加而增大,而差错率随N的增加而指数下降。在编码器复杂性相同的情况下,卷积码的性能优于分组码。

当输入信息比特数为 1 位,约束长度为 K 时,可以画出卷积编码器如图所示:

卷积码可以用解析式表示法、图形表示法等方式来表示,而图形表示法又可分为状态图、树图、网络图等方式。

其中最重要的就是网络图。

网络图横坐标表示时刻纵坐标表示状态,状态数与约束长度相关。实线表示输入 0 所走分支,虚线表示输入 1 所走分支,线上的数字表示输出的码字。任意给定一个信息序列,网络图中就存在一条特定的路径。这就是研究卷积码最大似然译码维特比算法的重要工具。

通常卷积码编码器开始工作前都要进行初始化,按编码器的初始状态的不同可以分为两类:

末尾补零卷积码(Tail-bits):

通常卷积码编码器开始工作时都要进行初始化,编码开始前将编码器的所有寄存器单元都进行清零处理。而在编码结束时,需要添加0到码流末尾(Tailed Termination),使编码器状态归零, 这即是末尾补零卷积码。相对于编码比特而言,添加的末尾比特增加了编码开销。

咬尾卷积码(Tail biting):

咬尾卷积编码是一种特殊的卷积编码,它通过将编码器的移位寄存器的初始值设置为输入流的末尾比特值,使得移位寄存器的初始和最终状态相同。编码器开始工作时要进行特殊的初始化,将输入信息比特的最后m个比特依次输入编码器的寄存器中,当编码结束时,编码器的结束状态与初始状态相同。由于这个编码方法没有出现尾比特,因此称为咬尾编码。 咬尾编码减少了尾比特的编码开销。对于咬尾编码方法,在译码过程中,由于编码器的初始状态和结尾状态是未知的,因此就需要增加一定的译码复杂度,才能确保好的译码性能。和普通的卷积编码相比,咬尾的方案最大的优点是克服了编码时的码率损失,并且适合迭代译码,不过付出的代价是译码复杂度的增加。

二、代码实现

//使用末尾补零卷积码的编码方式,代码还不够简洁,使用移位寄存器或许会更好一些,,,

/******************************************************/
	module viterbi_encode9(X,Y,Clock,Reset); 
/******************************************************/

input X, Clock, Reset;

output [1:0] Y; 

wire [1:0] Yt;
wire X, Clock, Reset;

wire [8:0] PolyA, PolyB;
wire [8:0] wA, wB, ShReg;

//   assign   PolyA = 9'b111_101_011;
//   assign   PolyB = 9'b101_110_001;

   assign   PolyA = 9'b110_101_111;
   assign   PolyB = 9'b100_011_101;

   assign wA = PolyA & ShReg;
   assign wB = PolyB & ShReg;

   assign ShReg[8] = X;
   pDFF dff7(ShReg[8], ShReg[7], Clock, Reset);
   pDFF dff6(ShReg[7], ShReg[6], Clock, Reset);   
   pDFF dff5(ShReg[6], ShReg[5], Clock, Reset);
   pDFF dff4(ShReg[5], ShReg[4], Clock, Reset);
   pDFF dff3(ShReg[4], ShReg[3], Clock, Reset);
   pDFF dff2(ShReg[3], ShReg[2], Clock, Reset);
   pDFF dff1(ShReg[2], ShReg[1], Clock, Reset);
   pDFF dff0(ShReg[1], ShReg[0], Clock, Reset);

   assign Yt[1] = wA[0] ^ wA[1] ^ wA[2] ^ wA[3] ^ wA[4] ^ wA[5] ^ wA[6] ^ wA[7] ^ wA[8];
   assign Yt[0] = wB[0] ^ wB[1] ^ wB[2] ^ wB[3] ^ wB[4] ^ wB[5] ^ wB[6] ^ wB[7] ^ wB[8];

   pDFF dffy1(Yt[1], Y[1], Clock, Reset);
   pDFF dffy0(Yt[0], Y[0], Clock, Reset);
endmodule

/******************************************************/
	module pDFF(DATA,QOUT,CLOCK,RESET);
/******************************************************/

parameter WIDTH = 1; 

input [WIDTH-1:0] DATA;
input CLOCK, RESET;

output [WIDTH-1:0] QOUT;

reg [WIDTH-1:0] QOUT;

   always @(posedge CLOCK or negedge RESET)
      if (~RESET) QOUT <= 0; //active low reset
         else QOUT <= DATA;

endmodule

参考:

维特比译码器(Viterbi Decoder)硬件架构(一)–卷积码及编解码算法介绍

Encoding/Decoding - Presentation of Convolutional Code

### 卷积编码的概念与实现方法 卷积编码是一种特殊的卷积编码方式,其核心思想在于通过将初始状态和最终状态关联起来,使编码过程形成一个循环结构。这种设计可以有效减少传统卷积编码中因终止状态引入的冗余开销[^2]。 在通信系统中,卷积码通常被描述为(n, k, m)型卷积码,其中n表示编码输出的比特数,k表示输入的信息比特数,m为编码存储长度,即输入信息组在编码器中需要存储的单位时间[^4]。卷积编码在此基础上进一步优化了编码过程,使其更适合实际应用中的高效传输需求。 #### MATLAB实现方法 MATLAB提供了现成的函数来实现卷积编码,包括卷积编码。以下是一个典型的实现示例: ```matlab %% 参数设置 conv_in = [1 0 1 1]; % 输入比特流 L = 7; % 约束长度 trellis = poly2trellis(L, [133, 171]); % 定义生成多项式 %% 编码过程 conv_out = convenc(conv_in, trellis, 'tailbiting'); % 使用模式进行编码 %% 输出结果 disp('编码后的比特流:'); disp(conv_out); ``` 上述代码中,`poly2trellis`函数用于定义卷积编码的状态转移图,而`convenc`函数则实现了具体的编码过程。通过指定参数`'tailbiting'`,可以启用卷积编码模式[^3]。 #### Python实现方法 对于Python语言,可以通过第三方库如`pycodec`或自定义算法来实现卷积编码。以下是一个简单的实现示例: ```python def tail_biting_convolution_encode(input_bits, generator_polynomials, constraint_length): # 初始化状态 state = [0] * (constraint_length - 1) output_bits = [] for bit in input_bits: # 计算输出比特 for poly in generator_polynomials: encoded_bit = 0 for i in range(constraint_length): if (poly >> i) & 1: encoded_bit ^= state[i] encoded_bit ^= bit output_bits.append(encoded_bit) # 更新状态 new_state = [bit] + state[:-1] state = new_state return output_bits # 示例参数 input_bits = [1, 0, 1, 1] generator_polynomials = [0b1001001, 0b1011101] # 对应十进制的133和171 constraint_length = 7 # 编码过程 encoded_bits = tail_biting_convolution_encode(input_bits, generator_polynomials, constraint_length) print("编码后的比特流:", encoded_bits) ``` 上述代码模拟了卷积编码的过程,通过状态转移和生成多项式计算输出比特流。需要注意的是,此代码仅为简化版示例,实际应用中可能需要进一步优化以支持完整的特性[^2]。 ### 注意事项 - 在使用卷积编码时,建议确保对卷积编码的基本原理有深入理解,以便更好地配置相关参数。 - MATLAB中可以直接利用内置函数实现卷积编码,而Python则需要手动编写算法逻辑。 - 解码过程通常采用维特比算法(Viterbi Algorithm),结合软判决译码可以进一步提升性能[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值