代码随想录训练营Day21二叉树part7

530.二叉搜索树的最小绝对差

跟昨天验证二叉搜索树的双指针思路一样。

501.二叉搜索树中的众数

在这里插入图片描述

暴力法:遍历一遍,数值和频率存入map,再对map排序。
也可以采用双指针,而且最大频率是可以实时更新的,当遇到了更大的最大频率值,把之前存入结果的数值清空再重新放即可。

class Solution {
public:
    TreeNode* pre=nullptr;
    int count=0;int maxfre=0;
    vector<int> result;
    void maxFrequency(TreeNode* cur){
        if(cur==nullptr) return;
        maxFrequency(cur->left);
        if(pre==nullptr) count=1;
        else{
            if(pre->val==cur->val) count++;
            else count=1;
        }
        
        if(count==maxfre){
            result.push_back(cur->val);
        }
        if(count>maxfre){
            maxfre=count;
            result.clear();
            result.push_back(cur->val);
        } 

        pre=cur;
        maxFrequency(cur->right);

    }
    vector<int> findMode(TreeNode* root) {
        maxFrequency(root);
        return result;
    }
};

235.二叉树搜索树的最近公众祖先

利用二叉搜索树不需要全部遍历,是有方向的寻找。所以当我们从上向下去递归遍历,第一次遇到 cur节点是数值在[p, q]区间中,那么cur就是 p和q的最近公共祖先。
而递归遍历顺序,本题就不涉及到 前中后序了(这里没有中节点的处理逻辑,遍历顺序无所谓了)
另外关于递归逻辑中,要明确是找一条边还是找整棵树,如果是一条边,遇到递归函数的返回值,如果不为空,立刻返回。

    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        //if(root==NULL) return root;
        if(root->val>q->val && root->val>p->val){
            return lowestCommonAncestor(root->left,p,q);
        }
        else if(root->val<q->val && root->val<p->val){
            return lowestCommonAncestor(root->right,p,q);
        }
        else
            return root;
    }
};

迭代法:

class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        while(root){
            if(root->val>q->val && root->val>p->val)
                root=root->left;
            else if(root->val<q->val && root->val<p->val)
                root=root->right;
                else
                    break;
        }
        return root;
    }

};
### 关于代码随想录 Day04 的学习资料与解析 #### 一、Day04 主要内容概述 代码随想录 Day04 的主要内容围绕 **二叉树的遍历** 展开,包括前序、中序和后序三种遍历方式。这些遍历可以通过递归实现,也可以通过栈的方式进行迭代实现[^1]。 #### 二、二叉树的遍历方法详解 ##### 1. 前序遍历(Pre-order Traversal) 前序遍历遵循访问顺序:根节点 -> 左子树 -> 右子树。以下是基于递归的实现: ```python def preorderTraversal(root): result = [] def traversal(node): if not node: return result.append(node.val) # 访问根节点 traversal(node.left) # 遍历左子树 traversal(node.right) # 遍历右子树 traversal(root) return result ``` 对于迭代版本,则可以利用显式的栈来模拟递归过程: ```python def preorderTraversal_iterative(root): stack, result = [], [] current = root while stack or current: while current: result.append(current.val) # 访问当前节点 stack.append(current) # 将当前节点压入栈 current = current.left # 转向左子树 current = stack.pop() # 弹出栈顶元素 current = current.right # 转向右子树 return result ``` ##### 2. 中序遍历(In-order Traversal) 中序遍历遵循访问顺序:左子树 -> 根节点 -> 右子树。递归实现如下: ```python def inorderTraversal(root): result = [] def traversal(node): if not node: return traversal(node.left) # 遍历左子树 result.append(node.val) # 访问根节点 traversal(node.right) # 遍历右子树 traversal(root) return result ``` 迭代版本同样依赖栈结构: ```python def inorderTraversal_iterative(root): stack, result = [], [] current = root while stack or current: while current: stack.append(current) # 当前节点压入栈 current = current.left # 转向左子树 current = stack.pop() # 弹出栈顶元素 result.append(current.val) # 访问当前节点 current = current.right # 转向右子树 return result ``` ##### 3. 后序遍历(Post-order Traversal) 后序遍历遵循访问顺序:左子树 -> 右子树 -> 根节点。递归实现较为直观: ```python def postorderTraversal(root): result = [] def traversal(node): if not node: return traversal(node.left) # 遍历左子树 traversal(node.right) # 遍历右子树 result.append(node.val) # 访问根节点 traversal(root) return result ``` 而迭代版本则稍复杂一些,通常采用双栈法或标记法完成: ```python def postorderTraversal_iterative(root): if not root: return [] stack, result = [root], [] while stack: current = stack.pop() result.insert(0, current.val) # 插入到结果列表头部 if current.left: stack.append(current.left) # 先压左子树 if current.right: stack.append(current.right) # 再压右子树 return result ``` #### 三、补充知识点 除了上述基本的二叉树遍历外,Day04 还可能涉及其他相关内容,例如卡特兰数的应用场景以及组合问题的基础模板[^2][^4]。如果遇到具体题目,可以根据实际需求调用相应算法工具。 --- ####
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值