用柔性神经k-Opt学习搜索路径问题的可行和不可行区域(未完,先看前驱文章L2S)


文章目录

Abstract

介绍了一种名为 Neural k-Opt(NeuOpt)的新型学习搜索(L2S)求解器,用于解决路径问题。它学习执行基于定制的动作分解方法和定制的循环双流(Recurrent Dual-Stream)解码器的灵活 k-opt 交换。

作为一项开创性的工作,我们绕过了纯可行性掩码方案,实现了对可行和不可行区域的自主探索,我们提出了一种名为 Guided Infeasible Region Exploration(GIRE)的方案。GIRE 通过补充可行性相关特征并利用奖励塑造来增强 NeuOpt 策略网络,使其更有效地指导强化学习。

此外,我们为 NeuOpt 配备了动态数据增强(D2A),以便在推理过程中进行更多样化的搜索。在旅行商问题(TSP)和有容量限制的车辆路径问题(CVRP)上的广泛实验表明,我们的 NeuOpt 不仅显著超越了现有的(基于掩码的)L2S 求解器,而且还展示了其优越性,超越了学习构建(L2C)和学习预测(L2P)求解器。值得注意的是,我们提供了新的视角,展示了神经求解器如何处理 VRP 约束。我们的代码可在 https://github.com/yining043/NeuOpt 上找到。

1 Introduction

车辆路径问题(VRPs)在各种实际应用中非常普遍,它们提出了需要高效搜索算法解决的 NP-hard

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

太极生两鱼

要天天开心哦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值